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Abstract. We solve the sup-norm problem for spherical Hecke–Maaß newforms of square-free
level for the group GL(2) over a number field, with a power saving over the local geometric bound
simultaneously in the eigenvalue and the level aspect. Our bounds feature a Weyl-type exponent in
the level aspect, they reproduce or improve upon all known special cases, and over totally real fields
they are as strong as the best known hybrid result over the rationals.
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1. Introduction

1.1. The sup-norm problem

The sup-norm problem has taken a prominent position in recent years at the interface of
automorphic forms and analytic number theory. It is inspired by a classical question in
analysis about comparing two norms on an infinite-dimensional Hilbert space: given an
eigenfunction φ on a locally symmetric space X with a large Laplace eigenvalue λ and
‖φ‖2 = 1, what can be said about its sup-norm ‖φ‖∞?

This question is closely connected to the multiplicity of eigenvalues [41], and it is
motivated by the correspondence principle of quantum mechanics, where the high energy
limit λ→∞ provides a connection between classical and quantum mechanics. The sup-
norm of an eigenform with large eigenvalue gives some information on the distribution
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of its mass on X, which sheds light on the question to what extent these eigenstates can
localize (“scarring”). Despite a lot of work from different points of view, in the case of a
classically chaotic Hamiltonian (for instance when X is a compact hyperbolic manifold),
the relation between the classical mechanics and the quantum mechanics in the semi-
classical limit is currently not well-understood. This goes by the name of quantum chaos.
We refer the reader to the excellent surveys [39, 40] and the references therein for an
introduction to this topic and further details.

Purely analytic techniques can be used to give a best-possible solution to the sup-norm
problem on a general compact locally symmetric spaceX of dimension d and rank r [41]:

‖φ‖∞ �X λ
(d−r)/4, (1.1)

and this bound is sharp as it is attained, for instance, for the round sphere. (The symbol
� is introduced formally at the end of Section 2.) The bound is local in nature, in that
its proof is insensitive to the global geometry of X, and in general it still allows for
significant concentration of mass at individual points. In many cases, in particular for
compact hyperbolic manifolds, a stronger bound is expected. The sup-norm problem aims
at decreasing the exponent in (1.1) or in a refined version thereof.

The beauty of the sup-norm problem lies in particular in the fact that it is amenable to
arithmetic techniques when the manifold is equipped with additional arithmetic structure.
Two classical examples in dimension 2 are the round sphereX = S2

= SO3(R)/SO2(R),
realized as a quotient of the projective group of units in the Hamilton quaternions, and
the modular surface X = SL2(Z)\H2, where H2 denotes the Poincaré upper half-plane
of complex numbers on which SL2(R) acts by hyperbolic isometries. In both cases, there
is an arithmetically defined family of Hecke operators commuting with the Laplacian,
so that it makes sense to consider joint eigenfunctions. A combination of analytic and
arithmetic techniques led to a significant improvement of (1.1) for joint Hecke–Laplace
eigenfunctions on these two arithmetic surfaces [24, 47]:

‖φ‖∞ �ε λ
5/24+ε for every ε > 0.

For applications, for instance in connection with Faltings’ delta function [25–27], it is also
important to consider the dependence on X of the implied constant in (1.1), in particular
asX varies through a sequence of covers. A typical situation is the case of the congruence
covers

00(N)\H2
→ SL2(Z)\H2, (1.2)

where 00(N) is the usual Hecke congruence subgroup consisting of 2 × 2 integral uni-
modular matrices with lower left entry divisible by N .

Following the original breakthrough of Iwaniec and Sarnak [24], a lot of effort went
into proving good upper bounds (and also lower bounds, but this is not the focus of the
present paper) for joint eigenfunctions, in a great variety of situations and with various
applications in mind: see for instance [3–7, 10, 18–20, 28, 31, 38, 45, 46, 51]. The results
fall roughly into two categories. On the one hand, one can try to establish bounds as
strong as possible. Somewhat reminiscent of the subconvexity problem in the theory of
L-functions, this often leads eventually to a “natural” exponent that marks the limit of
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techniques of analytic number theory. For example, in the case of the congruence cover
(1.2) for N a square-free integer, Templier [46] proved the important benchmark result

‖φ‖∞ �ε λ
5/24+εN1/3+ε, (1.3)

improving simultaneously1 in both aspects on the generic local bound λ1/4N1/2. On the
other hand, one can also confine oneself to some small numerical improvement over the
trivial bound, but use techniques that work on very general spaces X. Here the most
general available result is due to Marshall [31] for semisimple split Lie groups over totally
real fields and their totally imaginary quadratic extensions (CM-fields).

1.2. General number fields

In this paper, we address both points of view, and for the first time we address the sup-
norm problem for the group GL2 over a general number field F of degree n = r1 + 2r2
over Q, with r1 real embeddings and r2 conjugate pairs of complex embeddings. From
the perspective of automorphic forms, this is certainly the natural framework, and there
is little reason to treat the ground field Q separately. The underlying manifold is then a
quotient of the product of r1 copies of the upper half-plane H2 and r2 copies of the upper
half-space H3, so it has dimension d = 2r1 + 3r2 and rank r = r1 + r2 (cf. (1.1)). As is
well-known, the passage from Q to a general number field introduces two abelian groups,
the finite class group and the (except for the imaginary quadratic case) infinite unit group.
As has been observed in many contexts (e.g. in the context of cubic hypersurfaces [8]
and the Ramanujan conjecture [2]), these groups cause considerable technical difficulties
for arguments of analytic number theory; the general strategy is always to use an adelic
treatment to deal with issues of the class group and to use carefully chosen units in order
to work with algebraic integers whose size is comparable in all archimedean embeddings.
Our paper provides a general adelic counting scheme for such situations (see Section 6).

However, in our case the difficulties go much deeper than dealing with the class group
and the unit group. As soon as F has a complex place, the formalism of the amplified pre-
trace formula leads to counting integral matrices γ ∈ M2(oF ), which lie suitably close
to a certain maximal compact subgroup of GL2(F∞), and whose entries are described
by conditions involving real and imaginary parts at each complex place separately. If F
is not a CM-field, there is no global complex conjugation (see e.g. [36]), and hence the
global counting techniques that work over number fields like Q or Q(i) break down in the
general situation. In fact, the maximal compact subgroups of GL2(F∞) cannot be defined
over F unless F is a totally real field or a CM-field.

Another difficulty is signified by a fundamental difference between PSL2(R) and
PSL2(C). On the one hand, every arithmetic Fuchsian subgroup of PSL2(R) is com-
mensurable with SO+(L) for a suitable lattice L in a quadratic space V of signature
(2, 1), upon identifying SO+(V )with PSL2(R). On the other hand, an arithmetic Kleinian
subgroup of PSL2(C) is commensurable with SO+(M) for a suitable lattice M in a
quadratic space W of signature (3, 1), upon identifying SO+(W) with PSL2(C), if and

1 See also Remark 7 in Subsection 10.3.
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only if it contains a nonelementary Fuchsian subgroup [29, Theorem 10.2.3]. These spe-
cial Kleinian subgroups are already known to behave distinctively for the sup-norm prob-
lem [33], and they can be described in terms of the invariant trace fields and quaternion
algebras; in particular, their trace field is a quadratic extension of the maximal totally real
subfield.

For a general number field F , these structural features make the sup-norm problem
in many ways a very different problem. Therefore, we introduce a number of new de-
vices into the argument to leverage the specific interplay between the maximal compact
subgroups of GL2(F∞) and the arithmetic of F . In the hardest situation in our counting
problem, F is not totally real, and the field element ξ := tr(γ )2/det(γ ) is bounded in F∞
and very close to being totally real. In this case, we combine two observations that appear
to be novel in this context. On the one hand, we exploit a certain rigidity of number fields
(see Section 7) to show that ξ lies in a proper subfield of F . However, the denomina-
tor of ξ is arithmetically controlled by our specific amplifier (see Section 9), so ξ ∈ F
must be an algebraic integer. This is already a very strong conclusion when coupled with
the boundedness of ξ in F∞; however, except for special number fields F , we do not
know how to deal with the non-parabolic cases ξ 6= 4. On the other hand, by artificially
extending the spectrum, we can improve the performance of the pre-trace formula on
the geometric side so that γ ∈ M2(oF ) is also localized modulo some auxiliary ideal q.
Specifically, we can ensure that γ is locally parabolic modulo q. As a result, ξ ∈ 4 + q,
which forces ξ = 4 when the norm of q is large. In conclusion, in the hardest situation
we can eliminate all but parabolic matrices, which are relatively simple to count. We refer
the reader to Lemma 17 for a precise version of this argument, as well as to Lemma 16
for another application of the realness rigidity of number fields.

The precise setup of extending the spectrum and hence localizing γ modulo q is de-
scribed in Sections 2 and 3, with a special view toward treating the units in oF efficiently.
Indeed, there is a natural ambiguity of det(γ ) by units modulo squared units, while our
congruence conditions force the units that appear here to be quadratic residues modulo q;
we can choose q in such a way that these units are automatically squared units. Thus
the success of our method rests on three pillars: passage to a suitably chosen congruence
subgroup, a carefully designed amplifier equipped with arithmetic features as described
in Subsection 9.3, and the rigidity results for number fields mentioned above. At the tech-
nical level, we rely heavily on Atkin–Lehner operators (see Section 4) and the geometry
of numbers (see Section 5), which allow an efficient counting of the matrices γ in Sec-
tion 10.

In retrospect, the general idea of extending the spectrum to thin out the geometric
side of the pre-trace formula is not unprecedented, the most spectacular example be-
ing Iwaniec’s approach [21] to the Ramanujan conjecture for the metaplectic group (see
also [44] for another example). We believe that our variation of it, based on arithmetic
properties of a certain congruence subgroup and the underlying number field, introduces
a novel and flexible tool into the machinery of the sup-norm problem that may be useful
in other situations.

As another useful feature, our argument also uses positivity more strongly than the
previous treatments. Rather than carrying out an exact spectral average, we use positivity
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of our operators to establish a pre-trace inequality. This streamlines the argument sub-
stantially, e.g. we do not even have to mention Eisenstein series and oldforms. A similar
idea in the context of infinite volume subgroups was used by Gamburd [15].

Finally, we mention that in Section 8 we develop a uniform Fourier bound for spher-
ical Hecke–Maaß newforms for the group GL2 over a number field, which might be of
independent interest.

1.3. Main results

Our main result is a solution of the sup-norm problem for GL2 over any number field
simultaneously in the eigenvalue and the level aspect, provided the level is square-free.
In certain cases, we recover a Weyl-type saving, the strongest bound one can expect with
the current technology. To formulate our results, we introduce the tuple

λ := (λ1, . . . , λr1 , λr1+1, . . . , λr1+r2)

of Laplace eigenvalues at the r1 real places and the r2 complex places, and we write

|λ|∞ := |λ|R · |λ|C, |λ|R :=
r1∏
j=1

λj , |λ|C :=
r1+r2∏
j=r1+1

λ2
j . (1.4)

As usual, empty products are defined to be 1. We also denote by Nn the norm of an
integral ideal n (see Section 2 for further notation).

In classical language, we are looking at a cusp form φ on a congruence manifold X
(see Section 2 for precise definitions). The connected components of X correspond to the
ideal classes of F : they are left quotients of (H2)r1 × (H3)r2 by 00(n) and related level
n subgroups (cf. [42]). Assuming that ‖φ‖2 = 1 with respect to the probability measure
coming from invariant measures on H2 and H3, the generic local bound reads

‖φ‖∞ �F,ε |λ|
1/4+ε
∞ (Nn)1/2+ε.

Theorem 1. Let φ be an L2-normalized Hecke–Maaß cuspidal newform on GL2 over F
of square-free level n and trivial central character. Suppose that φ is spherical at the
archimedean places. Then for any ε > 0 we have

‖φ‖∞ �F,ε |λ|
5/24+ε
∞ (Nn)1/3+ε + |λ|

1/8+ε
R |λ|

1/4+ε
C (Nn)1/4+ε.

We emphasize that this result is new with any exponent less than 1/2 over Nn, any ex-
ponent less than 1/4 over |λ|R, and for any number field F other than Q and Q(i) (cf.
[3, 46]). In particular, for totally real fields this is the proper analogue of (1.3). In view of
the above remarks on the difficulties with general number fields, it is remarkable that the
methods in the level aspect—which historically appeared to be the harder parameter—are
flexible enough to produce a Weyl-type exponent in a general setup.

For a general number field F , the strength of Theorem 1 in the eigenvalue aspect |λ|∞
depends on the relative sizes of |λ|R and |λ|C. It is particularly strong for totally real fields;
for other fields, it fails to solve the sup-norm problem when |λ|C gets large relative to |λ|R
and Nn. The next theorem, in which F0 denotes the maximal totally real subfield of F ,
fixes this issue by saving in all aspects for any number field other than a totally real field.
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Theorem 2. Suppose that [F : F0] ≥ 2. Then, under the same assumptions as in Theo-
rem 1, we have

‖φ‖∞ �F,ε (|λ|
1/2
∞ Nn)

1
2−

1
8[F :F0]−4+ε.

In the special case [F : F0] = 2 this bound reads

‖φ‖∞ �F,ε |λ|
5/24+ε
∞ (Nn)5/12+ε,

so Theorem 2 improves on [3, Theorems 2–3] even in the case F = Q(i), and the
proof differs substantially in several aspects. Further, Theorem 2 with any exponent
less than 1/4 over |λ|∞ is new for any non-CM-field. For a sequence of fields with
[F : F0] → ∞, the exponents of |λ|∞ and Nn degenerate to 1/4 and 1/2, respectively,
but this defect only impacts the |λ|C-aspect due to the uniform exponents in Theorem 1.
It would be desirable to treat all number fields on equal footing (as was accomplished in
other contexts such as [2, 8]), but for that a new idea (or a completely new method) would
be needed to handle more efficiently the difficulties described in the previous subsection.

Recently, Assing [1] extended Theorems 1 and 2 to arbitrary level and central charac-
ter by combining the ideas of the present paper with the methods of Saha [38]. In Assing’s
results, the dependence on the Laplace eigenvalues and the square-free part of the level is
the same as ours, and this is coupled with a rather good dependence on the (remaining)
square part of the level and the conductor of the central character.

Convention. In this paper, we regard the number field F as being fixed, and we allow all
implied constants to depend on it (unless we emphasize the opposite).

2. Basic setup and notation

Let F be a number field of degree n = r1+2r2 over Q with ring of integers o and different
ideal d. The completions Fv at the various places v are equipped with canonical norms
(or modules) as in [50]. In particular, at an archimedean place v we have |x|v = |x|[Fv :R],
where | · | denotes the usual absolute value. We reserve the symbol p for prime ideals of o,
and we use it to label nonarchimedean places of F in the usual way. For each prime p, we
fix a uniformizer $p ∈ op of pop. As usual, we define the adele ring of F as a restricted
direct product

A := F∞ × Afin, F∞ :=
∏
v|∞

Fv, Afin :=
∏
′

p

Fp,

and we write accordingly

|x|A := |x∞|∞ · |xfin|fin, |x∞|∞ :=
∏
v|∞

|xv|v, |xfin|fin :=
∏
p

|xp|p

for the module of an idele x ∈ A×. We further decompose the archimedean module as

|x∞|∞ = |x∞|R · |x∞|C, |x∞|R :=
∏
v real

|xv|, |x∞|C :=
∏

v complex

|xv|
2. (2.1)
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This is consistent with (1.4). We introduce the following notation for the closure of o
in Afin:

ô :=
∏
p

op. (2.2)

We call a field element x ∈ F× totally positive if xv > 0 for every real place v.
We denote the group of totally positive field elements by F×+ , and the group of totally
positive units by o×+. We choose a set of representatives θ1, . . . , θh ∈ A×fin for the ideal
classes of F ; without loss of generality, they lie in ô.

As mentioned in the introduction, we can fix a square-free ideal q ⊆ o in such a
way that the only elements of o× that are quadratic residues modulo q are the elements
of (o×)2. Indeed, if u is a nonsquare unit, then F(

√
u)/F is one of the finitely many

quadratic extensions corresponding to the square classes in o×/(o×)2. Moreover, for any
prime p that is inert in this extension, u is a quadratic nonresidue modulo p. So if we
choose an inert prime for each of the above-mentioned extensions, and q is divisible by
all these primes, then q has the required property. We fix such an ideal q once and for all,
with the additional requirement that

N q ≥ 300n. (2.3)

We can clearly think of q as a function of F . (For concreteness, we could pick q so that
its norm is minimal, and with additional constraints we could even pin down q uniquely.)

We fix a square-free ideal n ⊆ o, and we consider the corresponding global Hecke
congruence subgroup

K :=
∏
v

Kv with Kv :=


O2(R) for v real,
U2(C) for v complex,
GL2(op) for p - n,
K0(pop) for p | n,

(2.4)

where

K0(pop) :=

{(
a b

c d

)
∈ GL2(op) : c ∈ pop

}
is the subgroup of GL2(op) consisting of the matrices whose lower left entry is divisible
by pop. As explained in the introduction, we need to enlarge our spectrum a bit. With this
in mind, we introduce

K[
:=

∏
v

K[
v with K[

v :=

{
Kv for v - q,
K1(pop) for p | q,

(2.5)

where

K1(pop) :=

{(
a b

c d

)
∈ GL2(op) : a − d ∈ pop, c ∈ pop

}
is the subgroup of K0(pop) consisting of the matrices whose diagonal entries are congru-
ent to each other modulo pop.
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We fix a Haar measure on GL2(A), and we use it to define the Hilbert space L2(X̃),
where X̃ is the finite volume coset space2

X̃ := GL2(F )\GL2(A)/Z(F∞). (2.6)

All the other L2-spaces in this paper will be regarded or defined as Hilbert subspaces of
L2(X̃). We consider a spherical Hecke–Maaß newform φ on GL2 over F of level n and
trivial central character. By definition, φ : GL2(A) → C is a left GL2(F )-invariant and
right Z(A)K-invariant function that generates an irreducible cuspidal representation π
of GL2 over F of conductor n. It spans the one-dimensional newspace πK , and it corre-
sponds to a pure tensor ⊗vφv of local newvectors φv ∈ π

Kv
v (cf. [34, Cor. 2], [13, Th. 4],

[9, Th. 1]). In particular, φ is a cuspidal eigenfunction of the Hecke algebra for K (as de-
fined in Section 3). Inspired by Venkatesh [48, Subsection 2.3], we regard φ as a square-
integrable function on the coset spaces

X := X̃/K and X[ := X̃/K[. (2.7)

More precisely, we identify L2(X) and L2(X[) with the right K-invariant and right K[-
invariant subspaces of L2(X̃) defined above.

In adelic treatments, one usually divides by Z(A) instead of Z(F∞), especially if the
central character is assumed to be trivial. Dividing by the smaller group Z(F∞) in (2.6)
makes the spaces in (2.7) larger and separates the infinite part and the finite part nicely.
The cost to pay is that one has to deal with a bigger automorphic spectrum: instead of
the trivial central character, one needs to consider all ideal class characters as central
characters.3 Introducing the ideal q, i.e. switching from X to X[, allows one to work with
Hecke operators of smaller support (see Section 3), which is immensely beneficial for our
matrix counting scheme (see Section 10). However, this has a similar effect (already for
F = Q) of enlarging the automorphic spectrum. Indeed, the resulting quotients X and X[

are orbifolds with finitely many connected components. The connected components of X
correspond to the ideal classes of F , while those of X[ correspond to certain cosets of the
ray class group modulo q. More concretely, reduction modulo q embeds U := o×/(o×)2

into V := (o/q)×/(o/q)×2 by our choice of q, and each connected component of X is
covered by exactly [V : U ] connected components of X[ under the natural covering map
X[→ X.

For a ramified place v (i.e. for v = p dividing the level n), the matrix Av :=( 1
$p

)
∈ GL2(Fv) normalizes Kv . The group K∗v generated by Kv and Av contains the

center Z(Fv), and K∗v /Z(Fv)Kv has order 2. By multiplicity one and the assumption that
the central character of φ is trivial, we infer that the right action of K∗v on φ is given by
a character K∗v → {±1}. It follows that |φ| is right invariant by the global Atkin–Lehner
group K∗ :=

∏
v K
∗
v , where we put K∗v := Z(Fv)Kv for all unramified places v, includ-

ing the archimedean ones. That is, for the purpose of studying the sup-norm ‖φ‖∞, we

2 For any ring R, we denote by Z(R) the matrix group
{(
a 0
0 a
)
: a ∈ R×

}
.

3 This subtlety enters in (3.13), where we assume that gcd(l,m) is a product of principal prime
ideals.
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can regard |φ| as a square-integrable function on the coset space

X∗ := GL2(F )\GL2(A)/K∗. (2.8)

We emphasize again that we regard L2(X∗), L2(X), L2(X[) as Hilbert subspaces
of L2(X̃), and we assume that ‖φ‖2 = 1 in all these spaces.

We allow all implied constants depend on the number field F , hence also on the
auxiliary ideal q chosen above for F . Accordingly, A� B means that |A| ≤ C|B| holds
for a constant C = C(F) > 0 depending on F , while A �S B means the same for a
constant C = C(F, S) > 0 depending on F and S. If S is a list of quantities including ε,
then it is implicitly meant that the bound holds for any sufficiently small ε > 0. The
relation A � B means that A � B and B � A hold simultaneously, while A �S B
means that A �S B and B �S A hold simultaneously. Finally, inspired by [3, 19], we
shall use the notation

A 4 B
def
⇐⇒ A�ε B|λ|

ε
∞(Nn)ε, (2.9)

which will be in force for the rest of the paper.

3. Hecke algebras and the idea of amplification

While our newform φ lives naturally on the space X, and in fact |φ| is well-defined even
on the space X∗, it is convenient to view φ as a function on X[ which is equipped with
more suitable operators for the purpose of amplification.

The groups Z(F∞)K and Z(F∞)K[ contain the central subgroup (cf. (2.2), (2.4),
(2.5))

Z := Z(F∞ô) =
∏
v|∞

Z(Fv)
∏
p

Z(op), (3.1)

hence we can identify X with 0\G/K , and X[ with 0\G/K[, where

G := GL2(A)/Z, 0 := GL2(F )Z/Z ∼= GL2(F )/Z(o). (3.2)

In particular, we can identify the functions on X (resp. X[) with those functions on G
that are left 0-invariant and right K-invariant (resp. right K[-invariant). Accordingly, we
have an inclusion of Hilbert spaces, each defined via the Haar measure that we fixed
on GL2(A),

L2(X) ≤ L2(X[) ≤ L2(0\G) ≤ L2(X̃). (3.3)

We define the Z(F∞)-invariant norm

‖g∞‖ :=
∏
v|∞

|av|
2
+ |bv|

2
+ |cv|

2
+ |dv|

2

2|avdv − bvcv|
, g∞ =

(
a b

c d

)
∈ GL2(F∞),

and we say that f : G → C is a rapidly decaying smooth function if the following
properties hold for g = g∞gfin, where g∞ ∈ GL2(F∞) and gfin ∈ GL2(Afin):

• f is compactly supported in gfin, and it is locally constant in gfin for any fixed g∞;
• ‖g∞‖

Nf (g) is bounded for any N > 0, and f is C∞ in g∞ for any fixed gfin.
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We denote by C(G) the convolution algebra of these rapidly decaying smooth functions
on G. For f ∈ C(G) and ψ ∈ L2(0\G), we consider the function R(f )ψ ∈ L2(0\G)

given by

(R(f )ψ)(x) :=

∫
G

f (y)ψ(xy) dy =

∫
G

f (x−1y)ψ(y) dy

=

∫
0\G

(∑
γ∈0

f (x−1γy)
)
ψ(y) dy. (3.4)

That is, R(f ) is an integral operator on 0\G with kernel

kf (x, y) :=
∑
γ∈0

f (x−1γy). (3.5)

Then R(f1 ∗ f2) = R(f1)R(f2) for f1, f2 ∈ C(G), and the adjoint of R(f ) equals R(f̌ )
with

f̌ (g) := f (g−1), g ∈ G.

We shall define convenient subalgebras of C(G) in terms of the restricted product
decomposition

G =
∏
′

v

Gv, Gv :=

{
GL2(Fv)/Z(Fv) for v |∞,
GL2(Fp)/Z(op) for v -∞.

(3.6)

We choose a Haar measure on each of the groups GL2(Fv) so that their product is the
Haar measure we fixed on GL2(A) earlier, and the measure of GL2(op) within GL2(Fp)

is 1. We define C(Gv) and its action fv 7→ R(fv) on L2(0\G) just as for C(G), but
with integration over Gv instead of G. The restricted tensor product of these algebras
is the C-span of pure tensors ⊗vfv such that fv ∈ C(Gv) for all places v and fp is
the characteristic function of GL2(op) for all but finitely many primes p. We regard this
product as a subalgebra of C(G) in the usual way, namely by identifying ⊗vfv with the
function x 7→

∏
v fv(xv) so that also R(⊗vfv) =

∏
v R(fv); the products are finite in

the sense that the factors equal the identity for all but finitely many v’s.
We write ĜL2(op) for M2(op)∩GL2(Fp), and we define K̂0(pop) as the subsemigroup

of ĜL2(op) consisting of the matrices with lower left entry divisible by p and upper left
entry coprime to p. In accordance with (2.4) and (2.5), we consider the following two
open subsemigroups of G:

M :=
∏
v

Mv with Mv :=


Gv for v |∞,
ĜL2(op)/Z(op) for p - n,
K̂0(pop)/Z(op) for p | n;

(3.7)

M[
:=

∏
v

M[
v with M[

v :=

{
Mv for v - q,
K1(pop)/Z(op) for p | q.

(3.8)



The sup-norm problem for GL(2) over number fields 11

Note that M (resp. M[) is left and right invariant by K (resp. K[). Finally, we define
the Hecke algebra for K , and the unramified Hecke algebra at q for K[, as the restricted
tensor products

H :=

⊗
′

v

Hv with Hv := C(Kv\Mv/Kv),

H [
:=

⊗
′

v

H [
v with H [

v := C(K
[
v\M

[
v/K

[
v).

These algebras have a unity element, unlike C(G) or C(Gv).
Note that H acts on L2(X), and H [ acts on L2(X[), through f 7→ R(f ). There

is a C-algebra embedding ι : H [ ↪→ H such that any f ∈ H [ acts on the subspace
L2(X) of L2(X[) exactly as ι(f ) ∈H does. We define this embedding as ι := ⊗vιv , by
choosing an appropriate C-algebra embedding ιv :H

[
v ↪→Hv at each place v. For v - q,

the local factors H [
v and Hv are equal, so we choose ιv to be the identity map. For v | q,

the local factor H [
v is isomorphic to C, so there is a unique choice for ιv . From now on,

we use the usual convention that the subscript “∞” collects the local factors at v |∞,
while the subscript “fin” collects the local factors at v -∞. Then, in particular, we can
talk about the C-algebra embedding ιfin : H

[
fin ↪→ Hfin. Under this embedding, thinking

of Hfin (resp. H [
fin) as a subalgebra of C(Kfin\Gfin/Kfin) (resp. C(K[

fin\Gfin/K
[
fin)), the

constant function vol(K[
fin)
−1 on a double coset K[

fingK
[
fin ⊂ M

[
fin becomes the constant

function vol(Kfin)
−1 on the double coset KfingKfin ⊂ Mfin. In the next two paragraphs,

we introduce the Hecke operators for X in terms of Hfin, and the (unramified at q) Hecke
operators for X[ in terms of H [

fin. Our presentation is based to some extent on [42, Sec-
tion 2] and [43, Ch. 3].

For any nonzero ideal m ⊆ o, we consider the Hecke operator Tm :=R(tm) on L2(X),
where tm ∈Hfin is given by

tm(x) :=

{
(Nm)−1/2 vol(Kfin)

−1 for x ∈ Mfin and (det x)o = m,

0 otherwise.
(3.9)

We note that here the determinant of x ∈ M2(ô)/Z(ô) is an element of ô/(ô×)2 rather than
an element of ô, but still it determines a unique ideal in o that we denoted by (det x)o. We
also need the supplementary operator Sm := R(sm) on L2(X), with sm ∈Hfin defined as
follows. First we assume that m is coprime to the level n. We take any finite idele µ ∈ A×fin
representing m, i.e. m = µo, and then we put

sm(x) :=

{
vol(Kfin)

−1 for x ∈
(µ

µ

)
Kfin/Z(ô),

0 otherwise.
(3.10)

The function sm∈Hfin is independent of the representative µ, becauseKfin contains Z(ô),
and Sm agrees with the right action of

(µ
µ

)
. In particular, Sm commutes with the Hecke

operators. Using the fact that L2(X) consists of functions invariant under Z(FF∞ô), we
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see that Sm only depends on the ideal class of m, and it is the identity map whenever
m is principal. If m and n are not coprime, then we define sm (hence also Sm) to be
zero. The Hecke operators commute with each other as a consequence of the following
multiplicativity relation, valid for all nonzero ideals l,m ⊆ o (cf. [42, (2.12)]):

tl ∗ tm =
∑

k|gcd(l,m)

sk ∗ tlm/k2 , therefore TlTm =
∑

k|gcd(l,m)

SkTlm/k2 . (3.11)

In addition, if m is coprime to the level n, then tm = sm ∗ ťm, whence Tm is a normal
operator, and it is even self-adjoint when m is principal.

For any ideal m ⊆ o coprime to q, we define the functions t[m, s
[
m ∈H [

fin in the same
way as tm, sm ∈Hfin, but withKfin andMfin replaced byK[

fin andM[
fin (cf. (3.9)–(3.10)).

In particular,

t
[
m(x) :=

{
(Nm)−1/2 vol(K[

fin)
−1 for x ∈ M[

fin and (det x)o = m,

0 otherwise.
(3.12)

The corresponding operators on L2(X[) are T [m := R(t
[
m) and S[m := R(s

[
m). Then in

fact ιfin(t
[
m) = tm and ιfin(s

[
m) = sm under the C-algebra embedding ιfin : H

[
fin ↪→ Hfin,

hence (3.11) implies the analogous relations

t
[

l ∗ t
[
m =

∑
k|gcd(l,m)

s
[

k ∗ t
[

lm/k2 , therefore T
[

l T
[
m =

∑
k|gcd(l,m)

S
[

kT
[

lm/k2 .

An important special case is when gcd(l,m) is a product of principal prime ideals not
dividing nq. In this case, the above relations simplify to

t
[

l ∗ t
[
m =

∑
k|gcd(l,m)

t
[

lm/k2 , therefore T
[

l T
[
m =

∑
k|gcd(l,m)

T
[

lm/k2 . (3.13)

In addition, if m is coprime to nq, then t[m = s
[
m ∗ ť

[
m, whence T [m is a normal operator,

and it is even self-adjoint when m is principal.
Let f ∈ H be arbitrary. As φ ∈ L2(X) is a newform of level n, we have R(f )φ =

c(f )φ for some c(f ) ∈ C. The same also holds for f ∈ H [, because in this case
ι(f ) ∈ H , and R(f )φ = R(ι(f ))φ. Moreover, if f = ⊗vfv is a pure tensor from H [,
then R(fv)φ = c(fv)φ for some c(fv) ∈ C, and c(f ) =

∏
v c(fv); there is a similar

decomposition c(f ) = c(f∞)c(ffin) for partial tensors f = f∞ ⊗ ffin ∈H [
∞ ⊗H [

fin. In
particular, φ is an eigenfunction of each Hecke operator Tm with eigenvalue

λ(m) := c(tm), (3.14)

and for m coprime q it is also an eigenfunction of T [m with the same eigenvalue.
Now we describe along these lines the idea of amplification, a technique pioneered

by Duke, Friedlander, Iwaniec, and Sarnak [11, 14, 24] to prove efficient bounds for
automorphic L-functions on the critical line, and also for |φ(g)| at a given g ∈ GL2(A).
Assume that f ∈ H [ is such that the operator R(f ) on L2(X[) is positive. Then the
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eigenvalue c(f ) is nonnegative, and the orthogonal decomposition L2(X[) = (Cφ) +
(Cφ)⊥ is R(f )-invariant (because R(f ) is self-adjoint). Any ψ ∈ L2(X[) decomposes
uniquely as ψ = ψ1 + ψ2, where ψ1 ∈ Cφ and ψ2 ∈ (Cφ)⊥, and therefore

〈R(f )ψ,ψ〉 = 〈R(f )ψ1, ψ1〉 + 〈R(f )ψ2, ψ2〉 ≥ 〈R(f )ψ1, ψ1〉.

On the right hand side, we have explicitly ψ1 = 〈ψ, φ〉φ, hence flipping the two sides we
obtain

c(f )|〈ψ, φ〉|2 ≤ 〈R(f )ψ,ψ〉.

The inner products and alsoR(f )ψ can be expressed as integrals overX[ (cf. (3.3)–(3.5)),
yielding

c(f )

∫
X[×X[

φ(x)φ(y)ψ(y)ψ(x) dx dy ≤

∫
X[×X[

kf (x, y)ψ(y)ψ(x) dx dy.

We can use this inequality to estimate the value |φ(g)| at the given point g ∈ GL2(A)
as follows. Note that the integrals are over a rather concrete space: an orbifold with finitely
many connected components. We take a basis of open neighborhoods {V } ⊂ X[ of the
point 0gZK[

∈ X[ (the image of the coset gZ ∈ G), and we let ψ = ψV ∈ L2(X[) run
through the corresponding characteristic functions. Then by continuity, as V approaches
the point 0gZK[

∈ X[,

c(f )
(
|φ(g)|2 + o(1)

)
vol(V × V ) ≤

(
kf (g, g)+ o(1)

)
vol(V × V ).

We conclude
c(f )|φ(g)|2 ≤ kf (g, g) =

∑
γ∈0

f (g−1γg). (3.15)

This is the pre-trace inequality mentioned in the introduction. The idea of amplification is
to find, in terms of φ, a positive operator R(f ) as above such that c(f ) is relatively large,
while the right hand side is relatively small. By dividing the last inequality by c(f ), we
see that such an operator gives rise to an upper bound for |φ(g)|. We note that the above
argument goes back to Mercer [32]; see especially the end of Section 6 in his paper, and
see also [37, Section 98] for a modern account.

4. Iwasawa decomposition modulo Atkin–Lehner operators

In the next two sections, we establish a nice fundamental domain for the space X∗

(cf. (2.8)), which is the natural habitat of |φ|. We start by developing a variant of the
usual Iwasawa decomposition for GL2(Fv). The results are probably known to experts.

First we recall the action of GL2(R) on the hyperbolic plane H2, and the action of
GL2(C) on the hyperbolic 3-space H3. We identify H2 with a half-plane in the set of
complex numbers C = R+ Ri,

H2
:= {x + yi : x ∈ R, y > 0} ⊂ C. (4.1)
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A matrix
(
a b
c d

)
∈ GL+2 (R) of positive determinant maps P ∈ H2 to (aP + b)(cP + d)−1

∈ H2, while
(
−1

1

)
∈ GL2(R) maps it to −P ∈ H2. This determines a transitive action

of GL2(R) on H2, and by examining the stabilizer of the point i ∈ H2, we see that

H2 ∼= GL2(R)/Z(R)O2(R). (4.2)

Similarly, we identify H3 with a half-space in the set of Hamilton quaternions H =
R+ Ri + Rj + Rk,

H3
:= {x + yj : x ∈ C, y > 0} ⊂ H. (4.3)

A matrix
(
a b
c d

)
∈ GL+2 (C) of positive real determinant maps a point P ∈ H3 to

(aP + b)(cP + d)−1
∈ H3, while any central element

(
a
a

)
∈ GL2(C) fixes it. This

determines a transitive action of GL2(C) on H3, and by examining the stabilizer of the
point j ∈ H3, we see that

H3 ∼= GL2(C)/Z(C)U2(C). (4.4)

The following two lemmas provide explicit local Iwasawa decompositions; in par-
ticular, Lemma 1 (with y > 0) explicates the isomorphisms (4.2) and (4.4). Recall that
K∗v = Z(Fv)Kv for v |∞.

Lemma 1. Let v |∞ be an archimedean place. Any matrix
(
a b
c d

)
∈ GL2(Fv) can be

decomposed as (
a b

c d

)
=

(
y x

1

)
k, (4.5)

where4 (y x
1
)
∈ P(Fv) and k ∈ K∗v . Moreover, the absolute value of y is uniquely deter-

mined by

|y| =
|ad − bc|

|c|2 + |d|2
. (4.6)

Proof. Existence with a unique y > 0 is clear from our remarks above, especially from
(4.2) and (4.4). Equation (4.6) is well-known: we multiply both sides of (4.5) with its
conjugate transpose. We have k ∈

(
u
u

)
Kv for some u ∈ F×v , and then we get(

|a|2 + |b|2 ∗

∗ |c|2 + |d|2

)
=

(
|u|2

|u|2

)(
|y|2 + |x|2 x

x 1

)
.

It follows that |u|2 = |c|2 + |d|2, while taking the determinant of both sides reveals that
|ad − bc|2 = |u|4|y|2, and the claim follows. ut

4 For any ring R, we denote by P(R) the matrix group
{(
a b
0 d
)
: a, d ∈ R×, b ∈ R

}
.
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Lemma 2. Let v = p be a nonarchimedean place. Any matrix
(
a b
c d

)
∈ GL2(Fv) can be

decomposed as (
a b

c d

)
=

(
y x

1

)
k, (4.7)

where
(y x

1
)
∈ P(Fv) and k ∈ K∗v . Moreover, the p-adic absolute value of y is uniquely

determined by

|y|v =

{
|(ad − bc)/ gcd(c, d)2|v when |c|v < |d|v or p - n,
|$p(ad − bc)/ gcd(c, d)2|v when |c|v ≥ |d|v and p | n.

(4.8)

Here, gcd(c, d) stands for any generator of the op-ideal cop + dop. Similarly, the image
of k in the group K∗v /Z(Fv)Kv is uniquely determined, namely

k ∈

{
Z(Fv)Kv when |c|v < |d|v or p - n,
Z(Fv)KvAv when |c|v ≥ |d|v and p | n.

(4.9)

Proof. First we show that a decomposition of the form (4.7) exists with a y-coordinate
satisfying (4.8) and a k-component satisfying (4.9). We start with the decomposition, valid
for d 6= 0, (

a b

c d

)
=

(
(ad − bc)/d2 b/d

1

)(
d

c d

)
.

This is of the form (4.7) as long as |c|v ≤ |d|v and p - n, or |c|v < |d|v and p | n (be-
cause n is square-free). Moreover, the y-coordinate equals here (ad − bc)/d2, and also
cop + dop = dop by |c|v ≤ |d|v , which verifies (4.8) for this particular case. Similarly,
the k-component equals here

(
d
c d

)
∈ Z(Fv)Kv , so that (4.9) holds as well. The two cases

in which we have established (4.7) can be summarized as the case of |c/w|v ≤ |d|v ,
where we put

w :=

{
1 for p - n,
$p for p | n.

Assume now that we are in the complementary case |c/w|v > |d|v (including the case
d = 0), so that in particular |c|v ≥ |d|v . We consider the decomposition(

a b

c d

)
=

(
b a/w

d c/w

)(
1

w

)
.

By our initial case, the first factor on the right hand side has a suitable decomposition(
b a/w

d c/w

)
=

(
y x

1

)
k

with k ∈ Z(Fv)Kv , x ∈ Fv , and

y :=
(ad − bc)/w

(c/w)2
=
w(ad − bc)

c2 . (4.10)
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Therefore, (
a b

c d

)
=

(
y x

1

)
k

(
1

w

)
,

and this is a suitable decomposition upon regarding the product of the last two factors
as a single element k̃ ∈ K∗v . Moreover, cop + dop = cop by |c|v ≥ |d|v , hence (4.10)
satisfies (4.8) for this particular case. Similarly, k ∈ Z(Fv)Kv shows that k̃ ∈ Z(Fv)Kv or
k̃ ∈ Z(Fv)KvAv depending on whether p - n or p | n, and so (4.9) holds as well.

Now we prove that the p-adic absolute value |y|v and the image of k in the group
K∗v /Z(Fv)Kv are constant along all decompositions (4.7) of a given matrix

(
a b
c d

)
in

GL2(Fv). In other words, (
y1 x1

1

)
k1 =

(
y2 x2

1

)
k2

for y1, y2 ∈ F
×
v , x1, x2 ∈ Fv , k1, k1 ∈ K

∗
v implies that

y1/y2 ∈ o×p and k2k
−1
1 ∈ Z(Fv)Kv.

Rearranging, we get(
y1/y2 (x1 − x2)/y2

1

)
=

(
y2 x2

1

)−1(
y1 x1

1

)
= k2k

−1
1 .

In particular, both sides lie in P(Fv) ∩ K∗v which, by inspection, equals Z(Fv)P(op). It
follows that y1/y2 ∈ o×p and k2k

−1
1 ∈ Z(Fv)P(op) ⊂ Z(Fv)Kv . ut

5. Geometry of numbers and the fundamental domain

We start this section with a simple but useful observation about balancing infinite ideles
with units.

Lemma 3. Let y, z ∈ F×∞ be two infinite ideles such that |y|∞ = |z|∞. Then for any
positive integer m, there is an m-th powered unit t ∈ (o×)m such that

|tyv|v �m |zv|v, v |∞.

Proof. We fixm, and we look for t ∈ (o×)m in the form t = um with u ∈ o×. The infinite
idele s := z/y ∈ F×∞ satisfies |s|∞ = 1, and the conclusion can be rewritten as

m log(|u|v) = log(|sv|v)+Om(1), v |∞.

Let us introduce the notation

l(x) := (log(|xv|v))v|∞ ∈
∏
v|∞

R, x ∈ F×∞. (5.1)
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Then {l(u) : u ∈ o×} is a lattice in the hyperplane

W :=
{
w ∈

∏
v|∞

R :
∑
v|∞

wv = 0
}

(5.2)

by Dirichlet’s unit theorem (cf. [50, p. 93]). As the vector l(s)/m lies in W , there exists
a lattice point l(u) within O(1) distance from it. Multiplying by m, we get the required
conclusion in the stronger form

m log(|u|v) = log(|sv|v)+O(m), v |∞.

The proof is complete. ut

Remark 1. Applying Lemma 3 with m = 1 (or its proof if more geometric features
are needed), we see that F×∞/o

× has a fundamental domain lying in {y ∈ F×∞ :

|yv| � |y∞|
1/n for all v |∞}. We recall here that n = [F : Q], and |yv|v = |yv| when v

is a real place, but |yv|v = |yv|2 when v is a complex place. Switching to m = 2, we see
the same for F×∞/(o

×)2, or (mutatis mutandis) for F×∞/o
×

+ and F×+ /o
×

+ (cf. Section 2).

By Lemmata 1 and 2, any global matrix g ∈ GL2(A) can be decomposed (non-uniquely)
as

g =

(
y x

1

)
k, (5.3)

where
(y x

1
)
∈ P(A) and k ∈ K∗. Moreover, its height

ht(g) := |y|A =
∏
v

|yv|v

and the image of k in the group K∗/Z(A)K ∼=
∏

p|n{±1} are uniquely determined. By
using the ideal class representatives θ1, . . . , θh ∈ A×fin introduced in Section 2, we can
refine (5.3) and obtain a convenient fundamental domain for X∗ (cf. (2.8)).

Lemma 4. Any g ∈ GL2(A) can be decomposed as

g =

(
t s

1

)(
y x

1

)(
θi

1

)
k, (5.4)

where
(
t s

1
)
∈ P(F ),

(y x
1
)
∈ P(F∞), and k ∈ K∗. Moreover, the possible modules |y|∞

that occur for a given g ∈ GL2(A) are essentially constant, namely ht(g) � |y|∞.

Proof. By (5.3), we have a decomposition

g =

(
ỹ x̃

1

)
k̃,

where
(
ỹ x̃

1

)
∈ P(A) and k̃ ∈ K∗. We can write ỹ = tθiyy′ with some t ∈ F×, y ∈ F×∞,

y′ ∈ ô×, and a unique index i ∈ {1, . . . , h} depending on the fractional ideal ỹfino. Here



18 Valentin Blomer et al.

ô is as in (2.2). In addition, as F +F∞ is dense in A (see [50, Cor. 2 to Th. 3 in Ch. IV-2]),
we can write x̃ = s + tθi(x + x′) with some s ∈ F , x ∈ F∞, and x′ ∈ ô. Therefore,(

ỹ x̃

1

)
=

(
tθi s

1

)(
yy′ x + x′

1

)
=

(
t s

1

)(
θi

1

)(
y x

1

)(
y′ x′

1

)
.

On the right hand side, the second and third factors commute, while the fourth factor (call
it k′) lies in K∗, hence (5.4) follows with k := k′k̃ ∈ K∗.

The second statement is straightforward by the fact that (5.4) is an instance of the
Iwasawa decomposition (5.3). Indeed,

ht(g) = |tyθi |A = |yθi |A = |y|∞|θi |A � |y|∞.

Here we have used |t |A = 1 due to t ∈ F× (see [50, Th. 5 in Ch. IV-4]). ut

In contrast, the module |y|∞ can vary considerably if we allow any matrix γ ∈ GL2(F )

in place of
(
t s

1
)
∈ P(F ), and it will be useful for us to take |y|∞ as large as possible in

this more general context.

Lemma 5. Any g ∈ GL2(A) can be decomposed as

g = γ

(
y x

1

)(
θi

1

)
k, (5.5)

where γ ∈ GL2(F ),
(y x

1
)
∈ P(F∞), and k ∈ K∗. Moreover, among the possible mod-

ules |y|∞ that occur for a given g ∈ GL2(A), there is a maximal one.

Proof. By Lemma 4, or alternatively by Lemma 1 and strong approximation for SL2(A),
a decomposition of the form (5.5) certainly exists. Let us now fix any decomposition as
in (5.5), and consider the alternative decompositions

g = γ̃

(
ỹ x̃

1

)(
θj

1

)
k̃,

where γ̃ ∈ GL2(F ),
(
ỹ x̃

1

)
∈ P(F∞), and k̃ ∈ K∗. It suffices to show that there are only

finitely many possible values of |ỹ|∞ that exceed |y|∞. So we assume that |ỹ|∞ > |y|∞,
and rearrange the terms to get

γ̃−1γ

(
y x

1

)(
θi

1

)
=

(
ỹ x̃

1

)(
θj

1

)
(k̃k−1).

Then, with the notation
(
a b
c d

)
:= γ̃−1γ ∈ GL2(F ) and k′ := k̃k−1

∈ K∗, we have(
a b

c d

)(
y x

1

)(
θi

1

)
=

(
ỹ x̃

1

)(
θj

1

)
k′.

Multiplying both sides by a suitable matrix in Z(F ), we can further achieve that the great-
est common divisor co+ do equals θmo for some m. Now we calculate the height of both
sides, using Lemmata 1–4. On the right hand side, we get � |ỹ|∞ by Lemma 4. On the
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left hand side, the product of the local factors |ad − bc|v coming from (4.6) and (4.8)
equals 1 by ad − bc ∈ F× (cf. [50, Th. 5 in Ch. IV-4]). The product of the other factors
coming from (4.8) is �n 1 due to finitely many possibilities for the pair (θi, θm) and the
fact that

(y x
1
)

has no finite components. So we can focus on the remaining factors coming
from (4.6), and we conclude that

|y|∞∏
v|∞(|cvyv|

2 + |cvxv + dv|2)[Fv :R]
�n |ỹ|∞.

Along these lines, we also see that the fractional ideals co and do together with the de-
nominator on the left hand side determine |ỹ|∞ up to�n 1 choices, so it suffices to show
that these quantities only take on finitely many different values. At any rate, the right hand
side exceeds |y|∞ by assumption, hence we immediately get∏

v|∞

(|cvyv|
2
+ |cvxv + dv|

2)[Fv :R] �n 1. (5.6)

If c = 0, then (5.6) yields |d|∞ �n 1, so in this case there are �n 1 choices for the
fractional ideal do ⊆ θmo and its norm |d|∞, whose square is apparently the left hand
side of (5.6). If c 6= 0, then (5.6) yields |cy|∞ �n 1, so in this case there are �n,y 1
choices for the fractional ideal co ⊆ θmo. Let us fix a nonzero choice for co (including
an arbitrary choice of the generator c; however, none of the implied constants below will
depend on this choice). Dividing (5.6) by the squared norm |c|2∞ (which is� 1), we get∏

v|∞

(|yv|
2
+ |xv + dv/cv|

2)[Fv :R] �n 1. (5.7)

The factors are �y 1, hence xv + dv/cv �n,y 1 for all v |∞. Using also d/c ∈
(θmo)(co)

−1, we see that d/c as an element of A lies in a fixed compact set, so there
are finitely many choices for d/c and consequently for d as well. In the end, the left hand
side of (5.7) takes on finitely many different values, and the same is true of the left hand
side of (5.6). The proof is complete. ut

By Lemma 5, any double coset inX∗ can be represented by a matrix of the form
(y x

1
)(
θi

1

)
,

where
(y x

1
)
∈ P(F∞) and |y|∞ is maximal. We shall call such matrices special. We can

further specify these representatives by observing that, for any unit t ∈ o× and any field
element s ∈ θio,(

t s

1

)(
y x

1

)(
θi

1

)
=

(
t∞y t∞x + s∞

1

)(
θi

1

)(
tfin θ−1

i sfin
1

)
.

Indeed, the leftmost matrix lies in GL2(F ) and the rightmost matrix lies in K∗, hence
we can replace y by t∞y and x by t∞x + s∞ without changing |y|∞ and the double
coset represented. In particular, we can restrict y ∈ F×∞ to a fixed fundamental domain
for F×∞/o

× and x ∈ F∞ to a fixed fundamental domain for F∞/θio. We can further
tweak y ∈ F×∞ by replacing each component yv by its absolute value |yv|, thanks to the
observation that (

yv/|yv|

1

)
∈ K∗v , v |∞. (5.8)
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Again, |y|∞ is invariant under such a replacement. In this way, using appropriate fun-
damental domains for F×∞/o

× and F∞/θio, we obtain a set of representatives F(n) ⊂
GL2(A) for X∗ consisting of special matrices

(y x
1
)(
θi

1

)
such that the components of

y ∈ F×∞ and x ∈ F∞ satisfy (cf. Remark 1)

0 < yv � |y|
1/n
∞ and xv � 1, v |∞. (5.9)

By possibly shrinking F(n) further, we could get a true fundamental domain forX∗ (i.e. a
nice subset of GL2(A) representing each double coset in X∗ exactly once), but the above
construction is sufficient for our purposes.

Now we consider the 2n-dimensional R-algebra

M :=
∏
v real

C
∏

v complex

H, (5.10)

which becomes a Euclidean space if we postulate that the standard basis (the union of the
bases {1, i} and {1, i, j, k} of the various factors C and H embedded into M as subspaces)
is orthonormal. Within this space, we consider the generalized upper half-space (cf. (4.1)
and (4.3))

H :=
∏
v real

H2
∏

v complex

H3, (5.11)

and to each special matrix
(y x

1
)(
θi

1

)
∈ F(n), we associate the point (cf. (5.9))

P = P(x, y) :=
∏
v real

{xv + yvi} ×
∏

v complex

{xv + yvj} ∈H (5.12)

and the 2n-dimensional Z-lattice

3(P ) := {cP + d : c, d ∈ o} ⊂M. (5.13)

Note that a given point P ∈ H corresponds to at most h elements of F(n) in the above
sense.

The next lemma, a generalization of [3, Lemma 2], shows in terms of these lattices
that F(n) has good diophantine properties.

Lemma 6. Let
(y x

1
)(
θi

1

)
∈ F(n) with corresponding point P = P(x, y) ∈H. Then the

lattice 3(P ) ⊂M and its successive minima m1 ≤ · · · ≤ m2n satisfy:

(a) m1 · · ·m2n � |y|∞;
(b) |y|∞ � m2n

1 � (Nn)−1;
(c) m1 � · · · � mn and mn+1 � · · · � m2n;
(d) in any ball of radius R the number of lattice points is� 1+Rn(Nn)1/2+R2n

|y|−1
∞ .

Proof. (a) Let {u1, . . . , un} be a Z-basis of o. Then {u1, . . . , un, u1P, . . . , unP } is a
Z-basis of 3(P ), and calculating its exterior product coupled with Minkowski’s theo-
rem [16, Th. 3 on p. 124] shows that

m1 · · ·m2n � vol(M/3(P )) = |y|∞ vol(F∞/o)2 � |y|∞.
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(b) The bound |y|∞ � m2n
1 is clear from (a), so it suffices to show m2n

1 � (Nn)−1.
Let (c, d) ∈ o2 be any pair distinct from (0, 0). We choose any pair (a, b) ∈ F 2 such that
ad−bc 6= 0, and we consider the translated matrix

(
a b
c d

)(y x
1
)(
θi

1

)
∈ GL2(A). According

to Lemma 4, we have a decomposition(
a b

c d

)(
y x

1

)(
θi

1

)
=

(
t s

1

)(
ỹ x̃

1

)(
θj

1

)
k,

where
(
t s

1
)
∈ P(F ),

(
ỹ x̃

1

)
∈ P(F∞), and k ∈ K∗. The key observation here is that(y x

1
)(
θi

1

)
and

(
ỹ x̃

1

)(
θj

1

)
represent the same double coset in X∗, hence |ỹ|∞ ≤ |y|∞ by

the very assumption
(y x

1
)(
θi

1

)
∈ F(n). Now we proceed somewhat similarly to the proof

of Lemma 5. That is, we calculate the height of both sides, using Lemmata 1–4. On the
right hand side, we get� |ỹ|∞ by Lemma 4. On the left hand side, the product of the local
factors |ad − bc|v coming from (4.6) and (4.8) equals 1 by ad − bc ∈ F× (cf. [50, Th. 5
in Ch. IV-4]). The product of the other factors coming from (4.8) is� (Nn)−1 due to the
facts that c, d ∈ o are integers and

(y x
1
)

has no finite components. So, we can focus on
the remaining factors coming from (4.6), and we conclude that

|y|∞(Nn)−1∏
v|∞(|cvyv|

2 + |cvxv + dv|2)[Fv :R]
� |ỹ|∞ ≤ |y|∞.

Comparing the two sides gives∏
v|∞

(|cvyv|
2
+ |cvxv + dv|

2)[Fv :R] � (Nn)−1.

If we regard the left hand side as a product of
∑
v|∞[Fv : R] = n factors, the inequality

between the arithmetic and geometric mean readily yields(∑
v|∞

(|cvyv|
2
+ |cvxv + dv|

2)
)n
� (Nn)−1.

The sum on the left hand side equals the squared Euclidean norm ‖cP + d‖2, hence

‖cP + d‖2n � (Nn)−1.

This holds for all pairs (c, d) ∈ o2 distinct from (0, 0), so m2n
1 � (Nn)−1 as stated.

(c) It suffices to show that mn � m1 and m2n � mn+1, and for this we utilize the
left o-invariance of 3(P ). To prove the first relation, we take a nonzero lattice point Q in
3(P ) of Euclidean norm at most m1. Then oQ is an n-dimensional sublattice of 3(P )
with Z-basis {u1Q, . . . , unQ}, where {u1, . . . , un} is a Z-basis of o as before. Therefore,

mn ≤ max{‖u1Q‖, . . . , ‖unQ‖} � ‖Q‖ ≤ m1.
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To prove the second relation, we take Z-independent lattice pointsQ1, . . . ,Qn+1 ∈ 3(P )

of Euclidean norms at most mn+1. At least two of these, say Q and Q′, must be o-
independent, and then oQ + oQ′ is a 2n-dimensional sublattice of 3(P ) with Z-basis
{u1Q, . . . , unQ,u1Q

′, . . . , unQ
′
}. Therefore,

m2n ≤ max{‖u1Q‖, . . . , ‖unQ‖, ‖u1Q
′
‖, . . . , ‖unQ

′
‖} � max{‖Q‖, ‖Q′‖} ≤ mn+1.

(d) Let B ⊂ M be any ball of radius R > 0 (with respect to the Euclidean
norm). Then, by a lattice point counting argument using successive minima (see e.g.
[3, Lemma 1]5),

#(3(P ) ∩ B)� 1+
R

m1
+

R2

m1m2
+ · · · +

R2n

m1 · · ·m2n
.

Denoting by tk the degree k term, we can estimate, by part (c),

tk �

{
t
k/n
n ≤ max(1, tn) when 0 ≤ k ≤ n,
tn(t2n/tn)

(k−n)/n
≤ max(tn, t2n) when n ≤ k ≤ 2n,

hence our bound simplifies to

#(3(P ) ∩ B)� 1+
Rn

m1 · · ·mn
+

R2n

m1 · · ·m2n
.

The first denominator is � (Nn)−1/2 by (b), and the second is � |y|∞ by (a), so the
stated bound follows. ut

6. Counting the field elements

In this section, we collect some convenient counting bounds in the number field F . These
bounds are rather standard but indispensable for our goals, and we present them in a
consistent adelic language.

Lemma 7. Let t ∈ A× be an arbitrary idele. Then

(a) #{x ∈ F× : |x|v ≤ |tv|v for all places v} � |t |A;
(b) #{x ∈ F× : |x|v ≤ |tv|v for all v |∞ and |x|v = |tv|v for all v -∞} �ε |t |

ε
A for

every ε > 0.

5 We use this opportunity to note that, in the proof of [3, Lemma 1], kB ′ should be k2B ′, while
(k+1)B ′ should be (k2

+1)B ′, as follows from an observation of Mahler [16, p. 68]. The statement
and proof of [3, Lemma 1] are otherwise unchanged.
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Proof. (a) Let S be the set in part (a). If S is empty, we are done. Otherwise, we fix
any element x̃ ∈ S. By assumption, the idele s := t/x̃ ∈ A× satisfies 1 ≤ |sv|v for
all places v. Moreover, any x ∈ S is determined by the field element u := x/x̃ ∈ F×,
which in turn satisfies |u|v ≤ |sv|v for all places v. Now we consider a fundamental
parallelotope P for F∞/o. Then P := P × ô (cf. (2.2)) is a fundamental domain for A/F
(see [50, Prop. 6 in Ch. V-4]). The translates u + P (with u as before) have pairwise
disjoint interiors and, for a suitable idele y ∈ A× depending only on P , they all lie in the
adelic box

B := {z ∈ A : |zv|v ≤ |yvsv|v for all places v}.

Here we have used |sv|v ≥ 1 for all places v, and we remark that we can take yv = 1 at
the nonarchimedean places v. An adelic volume calculation now gives

#S �P #S vol(P ) ≤ vol(B) = |ys|A �P |s|A = |t |A,

and the bound (a) follows.
(b) Let S be the set in (b). If S is empty, we are done. Otherwise, we fix any x̃ ∈ S.

By assumption, the idele s := t/x̃ ∈ A× satisfies 1 ≤ |sv|v for all v |∞ and 1 = |sv|v for
all v -∞. Moreover, any x ∈ S is determined by u := x/x̃ ∈ F×, which in turn satisfies
|u|v ≤ |sv|v for all v |∞ and |u|v = |sv|v = 1 for all v -∞. The second relation implies
that u ∈ o× is a unit, while the first relation implies the lower bounds

|u|v =
∏
w|∞
w 6=v

|u|−1
w ≥

∏
w|∞
w 6=v

|sw|
−1
w = |sv|v · |s|

−1
∞ , v |∞.

In short,
log(|sv|v)− log(|s|∞) ≤ log(|u|v) ≤ log(|sv|v), v |∞.

With the notations (5.1)–(5.2), the vector l(u) lies in a fixed ball of radius � log(|s|∞)
intersected with a fixed lattice in W by Dirichlet’s unit theorem (cf. [50, p. 93]), hence
the usual volume argument yields

#l(u)� 1+ (log |s|∞)dimW
�ε |s|

ε
∞ = |s|

ε
A = |t |

ε
A.

However, u is determined by l(u) up to a root of unity (cf. [50, Th. 8 in Ch. IV-4]), so the
bound (b) follows. ut

We shall use Lemma 7 in the following classical formulation.

Corollary 1. Let y ∈ F×∞ be an infinite idele, and let m ⊆ F be a nonzero fractional
ideal. Then

(a) #{x ∈ F× : |x|v ≤ |yv|v for all v |∞ and xo ⊆ m} � |y|∞/Nm;
(b) #{x ∈ F× : |x|v ≤ |yv|v for all v |∞ and xo = m} �ε (|y|∞/Nm)ε for every

ε > 0.
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Proof. We take any finite idele z ∈ A×fin such that m = zo, and we write t := yz ∈ A×.
Clearly, |yv|v = |tv|v for all v |∞, while xo ⊆ m (resp. xo = m) is equivalent to
|x|v ≤ |tv|v (resp. |x|v = |tv|v) for all v -∞. Moreover,

|t |A = |y|∞
∏
v-∞
|zv|v = |y|∞/N (zo) = |y|∞/Nm.

Hence (a) and (b) are immediate from the corresponding parts of Lemma 7. ut

Remark 2. It is a valuable feature of Lemma 7 that the bounds only depend on the mod-
ule |t |A. This type of result proved to be useful in earlier investigations of the sup-norm
problem; for instance, [6, (4.1)–(4.2)] constitute a special case of Lemma 7 and Corol-
lary 1.

7. Realness rigidity of number fields

This section is devoted to the proof of the following result which will be used in the proof
of Theorem 2, whose germ is the argument in [3, beginning of Subsection 11.2].

Lemma 8. Let F0 be the maximal totally real subfield of F , and put m := [F : F0]. Let
ξ ∈ F be such that F = F0(ξ). Suppose that ξo = k/l, where k, l ⊆ o are integral ideals.
Suppose that

|ξv| ≤ A and |Im ξv| ≤ A
√
δv, v |∞, (7.1)

where A ≥ 1 and δv > 0 are arbitrary. Then

1 ≤ ((2A)n(N l)2)2(m−1)
|δ|C. (7.2)

Remark 3. The assumption F = F0(ξ) serves convenience. Without it, (7.2) still holds
with m being the degree of ξ over F0, and with |δ|C replaced by the relevant subproduct
restricted to the places of F that lie over the complex places of F0(ξ). In this more general
formulation, the result says that if ξ ∈ F is “close to being totally real”, then it is totally
real. Thus the result expresses a certain “rigidity of realness” in number fields.

Remark 4. If F = Q(i), and ξ = κ/λ with κ, λ ∈ Z[i] satisfying |κ| � |λ| � 3, then
the above statement says that if |Im ξ | � 3−2 with a sufficiently small implied constant,
then ξ ∈ Q. This is precisely the crucial input in [3, Subsection 11.2], which in this
special case is completely elementary.

Proof of Lemma 8. We shall assume that m ≥ 2, because (7.2) is trivially true for m = 1
(in this case the right hand side equals 1). Let F̃ be the Galois closure of F with ring of
integers õ, and consider the Galois groups

G := Gal(F̃ /Q), H := Gal(F̃ /F0), I := Gal(F̃ /F ).

Note that I ≤ H ≤ G, and

[G : I ] = [F : Q] = n, [G : H ] = [F0 : Q] = n/m, [H : I ] = [F : F0] = m.

(7.3)
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Indeed, the elements of I\G correspond to the n embeddings F ↪→ F̃ , the elements
of H\G correspond to the n/m embeddings F0 ↪→ F̃ , and the elements of I\H cor-
respond to the m conjugates of ξ over F0 via the right action σ 7→ ξσ of H on ξ . In
particular,

p(X) :=
∏

α∈I\H

(X − ξα)

is the minimal polynomial of ξ over F0 (a separable polynomial of degree m), and

1 :=
∏

α,β∈I\H
α 6=β

(ξα − ξβ)

is the discriminant of p(X). Note that right multiplication by any σ ∈ H permutes the
elements of I\H , hence H fixes 1, and so 1 ∈ F×0 . The key to deriving (7.2) is to
examine the absolute norm |NF0/Q(1)| ∈ Q×, which is a positive rational number.

Fixing an embedding F̃ ↪→ C, we get (cf. [50, Cor. 3 to Prop. 4 in Ch. III-3])

|NF0/Q(1)| =
∏

γ∈H\G

|1γ | =
∏

α,β∈I\H
α 6=β

∏
γ∈H\G

|ξαγ − ξβγ |.

The products αγ and βγ run through distinct representatives of I\G such that Hαγ
= Hβγ (namely Hαγ and Hβγ are equal to Hγ ), hence they correspond to distinct
embeddings σ, τ : F ↪→ C which agree on F0. We infer

|NF0/Q(1)| =
∏

σ,τ :F↪→C
σ 6=τ

σ�F0=τ�F0

|ξσ − ξ τ |. (7.4)

On the right hand side, there are (n/m)m(m − 1) = n(m − 1) factors by (7.3), all of
which are at most 2A by the first part of (7.1). By definition, each complex place v of F
can be identified with an unordered complex conjugate pair {σ, τ } of distinct embeddings
σ, τ : F ↪→ C. For such a pair {σ, τ }, we have {ξσ , ξ τ } = {ξv, ξv}, while the condition
σ �F0= τ �F0 is automatic as F0 is totally real (the restricted embedding F0 ↪→ R cor-
responds to the real place of F0 below v). Hence each complex place v of F contributes
two factors |ξv − ξv| to the product in (7.4), and these are at most 2A

√
δv by the second

part of (7.1). Bounding the other factors |ξσ − ξ τ
∣∣ in (7.4) by 2A as remarked initially,

we obtain in the end
|NF0/Q(1)| ≤ (2A)

n(m−1)
|δ|

1/2
C . (7.5)

On the other hand, with k̃ := kõ and l̃ := lõ, the nonzero fractional ideal in F̃ given
by

1
∏

α,β∈I\H
α 6=β

(l̃α l̃β) =
∏

α,β∈I\H
α 6=β

(ξα − ξβ)(l̃α l̃β) ⊆
∏

α,β∈I\H
α 6=β

(k̃α l̃β + l̃α k̃β) ⊆ õ
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is integral, hence its norm is at least 1. The norm of each factor l̃α l̃β ⊆ õ on the left hand
side equals

N (l̃α)N (l̃β) = (N l̃)2 = (N l)2[F̃ :F ],

hence we get

1 ≤ |N
F̃ /Q(1)|(N l)2m(m−1)[F̃ :F ]

= |N
F̃ /Q(1)|(N l)2(m−1)[F̃ :F0].

Raising the two sides to the power [F̃ : F0]
−1, and combining with (7.5), we conclude

1 ≤ |NF0/Q(1)|(N l)2(m−1)
≤
(
(2A)n(N l)2

)m−1
|δ|

1/2
C .

Finally, by squaring the two sides, (7.2) follows. ut

8. The Fourier bound

We denote by tv ∈ R∪Ri the spectral parameter of φ at the archimedean place v, so that
the Laplace eigenvalue of φ at v equals

λv =

{
1/4+ t2v when v is real,
1+ 4t2v when v is complex.

(8.1)

The archimedean Ramanujan conjecture states that tv ∈ R, while it is known [2, Th. 1]
that

tv ∈ R ∪ [−7/64, 7/64]i.

For convenience, we also introduce the tuple T := (Tv)v|∞, where

Tv := max(1/2, |tv|) �
√
λv. (8.2)

The aim of this section is to prove the following bound.

Lemma 9. Let
(y x

1
)
∈ P(F∞) and i ∈ {1, . . . , h}. Then for any ε > 0 we have

φ

((
y x

1

)(
θi

1

))
�ε (|T |

1/6
∞ + |T/y|

1/2
∞ )1+ε(Nn)ε. (8.3)

Proof. Our starting point is the Fourier–Whittaker decomposition (cf. [30, Subsec-
tion 2.3.2])

φ

((
y x

1

)(
θi

1

))
= ρ(o)

∑
0 6=n∈θ−1

i d−1

λ(nθid)
√
N (nθid)

W(ny)ψ(nx). (8.4)

Here, d is the different ideal of F , ρ(o) is a nonzero constant (“the first Fourier coeffi-
cient”), λ(m) are the Hecke eigenvalues introduced in (3.14),

W(ξ) :=
∏
v|∞

Wv(ξv), Wv(ξv) :=


|ξv |

1/2
v Kitv (2π |ξv |)

|0(1/2+itv)0(1/2−itv)|1/2
, v real,

|ξv |
1/2
v K2itv (4π |ξv |)

|0(1+2itv)0(1−2itv)|1/2
, v complex,
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is an L2-normalized (weight zero) Whittaker function for an appropriate Haar measure
on F×∞, and

ψ(ξ) :=
∏
v real

e2πiξv
∏

v complex

e2πi(ξv+ξv)

is the corresponding (appropriately normalized) additive character on F∞.
The local Whittaker function Wv satisfies (even for Tv = 1/2)

Wv(ξv)�

{
min(T 1/6

v , T
1/4
v |2π |ξv| − Tv|−1/4), |ξv| ≤ Tv,

e−π |ξv |, |ξv| > Tv,
(8.5)

as follows from [4, p. 679] and [17, Prop. 9], upon noting that |Im(tv)| ≤ 1/2 since
λv ≥ 0 (cf. (8.1)). We fix an ε > 0 for the rest of this section. Then, by [30, Prop. 2.2,
(2.16), (3.5), Prop. 3.2] and the fact that φ is a newform, we also have

|T |−ε∞ (Nn)−ε �ε |ρ(o)| �ε |T |
ε
∞(Nn)ε. (8.6)

Multiplying y ∈ F×∞ and x ∈ F∞ by a given unit from o× leaves the bound (8.3)
unchanged, hence we may assume that

|yv|v � |Tv|
log |y|∞/log |T |∞
v , v |∞. (8.7)

To see this, we apply Lemma 3 withm = 1 and observe that the product of the right hand
side over all v |∞ equals |y|∞. We may further assume that yv > 0 for all v |∞, thanks
to (5.8).

We estimate the sum on the right hand side of (8.4) by the Cauchy–Schwarz inequality
as

≤

( ∑
06=n∈θ−1

i d−1

|λ(nθid)|
2

|n|∞
∏
v|∞(1+ |nvyv|v)2ε

)1/2

×

( ∑
0 6=n∈θ−1

i d−1

|W(ny)|2
∏
v|∞

(1+ |nvyv|v)2ε
)1/2

, (8.8)

and we claim that the first factor satisfies∑
0 6=n∈θ−1

i d−1

|λ(nθid)|
2

|n|∞
∏
v|∞(1+ |nvyv|v)2ε

�ε |T/y|
ε
∞(Nn)ε. (8.9)

To see this, we fix a nonzero principal fractional ideal m ⊆ θ−1
i d−1 along with a nonneg-

ative integral vector l = (lv) ∈ N{v|∞}, and we estimate first the contribution of the n’s
lying in

{n ∈ θ−1
i d−1

: 2lv ≤ 1+ |nvyv|v < 2lv+1 for all v |∞ and no = m}.

By Corollary 1(b), this contribution is

�ε

(
|λ(mθid)|

2

Nm

∏
v|∞

2−2εlv
)
×

(
(Nm)−ε|y|−ε∞

∏
v|∞

2εlv
)
.
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Summing over all pairs (m, l), we infer that the left hand side of (8.9) is indeed

�ε |y|
−ε
∞

∑
0 6=m⊆θ−1

i d−1

|λ(mθid)|
2

(Nm)1+ε

∏
v|∞

( ∞∑
lv=1

2−εlv
)
�ε |T/y|

ε
∞(Nn)ε,

since the m-sum is�ε |T |
ε
∞(Nn)ε by Iwaniec’s trick [22, pp. 72–73].

To estimate the second factor in (8.8), we decompose F×∞ into generalized boxes

F×∞ =
⋃

k
I (k), I (k) :=

∏
v|∞

Iv(kv),

where k = (kv) ∈ Z{v|∞} runs through integral vectors, and the local components are
defined as

Iv(kv) :=


{
ξv ∈ F

×
v : kv

Tv

yv
< |ξv| ≤ (kv + 1)

Tv

yv

}
, kv ≥ 1,{

ξv ∈ F
×
v : |ξv| ≤

Tv

yv
and −kv ≤

∣∣∣∣|ξv| − Tv

2πyv

∣∣∣∣ < −kv + 1
}
, kv ≤ 0.

It is easy to see that I (k) = ∅ unless kv ≥ −bTv/yvc for each v |∞. Correspondingly,∑
0 6=n∈θ−1

i d−1

|W(ny)|2
∏
v|∞

(1+ |nvyv|v)2ε

=

∑
k=(kv)

kv≥−bTv/yvc

∑
n∈θ−1

i d−1∩I (k)

|W(ny)|2
∏
v|∞

(1+ |nvyv|v)2ε. (8.10)

Then the inner sum (the contribution of a given k) is

≤ #(θ−1
i d−1

∩ I (k))× sup
n∈θ−1

i d−1∩I (k)
|W(ny)|2

∏
v|∞

(1+ |nvyv|v)2ε.

We shall estimate both factors on the right hand side by a product of local factors over
v |∞. To estimate the lattice point count, we consider a fundamental parallelotope Pi for
the fractional ideal θ−1

i d−1. We can and will assume that Pi contains the origin and has
diameter Di � 1. Then we observe that⋃

n∈θ−1
i d−1∩I (k)

(n+ Pi) ⊆ J (k), J (k) :=
∏
v|∞

Jv(kv),

where the union on the left hand side is disjoint, and the local components are defined as

Jv(kv) :=


{
ξv ∈ Fv : kv

Tv

yv
−Di < |ξv| ≤ (kv + 1)

Tv

yv
+Di

}
, kv ≥ 1,{

ξv ∈ Fv : −kv −Di ≤

∣∣∣∣|ξv| − Tv

2πyv

∣∣∣∣ < −kv + 1+Di

}
, kv ≤ 0.
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Using vol(Pi)� 1 and Di � 1, it is now clear that

#(θ−1
i d−1

∩ I (k))� vol(J (k)) =
∏
v|∞

vol(Jv(kv))�
∏
v|∞

fv(kv),

where

fv(kv) :=


1+ Tv/yv, v real and kv ≥ 1,
1, v real and kv ≤ 0,
kv(1+ Tv/yv)2, v complex and kv ≥ 1,
1+ Tv/yv, v complex and kv ≤ 0.

By (8.5), we also have

sup
n∈θ−1

i d−1∩I (k)
|W(ny)|2

∏
v|∞

(1+ |nvyv|v)2ε �
∏
v|∞

gv(kv),

where

gv(kv) :=

{
|kvTv|

2ε
v e
−2πkvTv , kv ≥ 1,

|Tv|
2ε
v min(T 1/3

v , T
1/2
v |kvyv|

−1/2), kv ≤ 0.

By distributivity, we infer that the right hand side of (8.10) is

�

∑
k=(kv)

kv≥−bTv/yvc

(∏
v|∞

fv(kv)gv(kv)
)
=

∏
v|∞

( ∞∑
kv=−bTv/yvc

fv(kv)gv(kv)
)
. (8.11)

The local factor at a real place v is

�

∞∑
kv=1

(kvTv)
2ε(1+ Tv/yv)e−2πkvTv +

0∑
kv=−bTv/yvc

T 2ε
v min(T 1/3

v , T 1/2
v |kvyv|

−1/2)

�ε T
2ε
v (T

1/3
v + Tv/yv),

as follows by estimating the minimum in the second sum by T 1/3
v for kv = 0 and by

T
1/2
v |kvyv|

−1/2 for kv < 0. Similarly, the local factor at a complex place v is

�

∞∑
kv=1

(kvTv)
4εkv(1+ Tv/yv)2e−2πkvTv

+

0∑
kv=−bTv/yvc

T 4ε
v (1+ Tv/yv)min(T 1/3

v , T 1/2
v |kvyv|

−1/2)

�ε T
4ε
v (1+ Tv/yv)(T

1/3
v + Tv/yv)� T 4ε

v (T
1/3
v + Tv/yv)

2
� T 4ε

v (T
2/3
v + T 2

v /y
2
v ).

All in all, the local factor at each archimedean place v is

�ε |Tv|
2ε
v (|Tv|

1/3
v + |Tv/yv|v).
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We conclude, by (8.10) and (8.11), that∑
0 6=n∈θ−1

i d−1

|W(ny)|2
∏
v|∞

(1+ |nvyv|v)2ε �ε

∏
v|∞

|Tv|
2ε
v (|Tv|

1/3
v + |Tv/yv|v)

� |T |2ε∞(|T |
1/3
∞ + |T/y|∞), (8.12)

where we have used the balancing assumption (8.7) in the last step as follows:

|y|∞ ≤ |T |
2/3
∞ =⇒ |Tv|

1/3
v � |Tv/yv|v for all v |∞,

|y|∞ ≥ |T |
2/3
∞ =⇒ |Tv|

1/3
v � |Tv/yv|v for all v |∞.

Substituting (8.12) into (8.8), and also using (8.9) and (8.6), we obtain finally

φ

((
y x

1

)(
θi

1

))
�ε (|T |

1/6
∞ + |T/y|

1/2
∞ )|T |2ε∞ |T/y|

ε/2
∞ (Nn)2ε

�ε (|T |
1/6
∞ + |T/y|

1/2
∞ )1+12ε+ε(Nn)2ε.

Replacing ε by ε/13 completes the proof of (8.3). ut

Remark 5. Lemma 9 is close to optimal when |y|∞ is around |T |∞, but it does not
capture the exponential decay of φ in the cusps. This result, however, suffices for our
purposes, and in combination with Lemma 5, it yields a bound for |φ(g)| at any g ∈
GL2(A).

9. The amplifier

In Section 3, we have seen that any function f ∈H [ such that the operator R(f ) is posi-
tive can be used to bound |φ(g)| at a given point g ∈ GL2(A) (cf. (3.15)), complementing
the Fourier bound of the previous section (cf. Remark 5). In this section, we construct this
amplifier as a pure tensor f = f∞ ⊗ ffin, where f∞ ∈ H [

∞ and ffin ∈ H [
fin. Then R(f )

is the product of the commuting operators R(f∞) and R(ffin), hence it is positive as long
as both R(f∞) and R(ffin) are (cf. [37, Section 104]).

9.1. The archimedean part of the amplifier

In Section 5, we introduced the generalized upper half-space H (cf. (5.11)) as a subset
of the Euclidean space M (cf. (5.10)), and we identify it with G∞/K∞ via (4.2), (4.4),
(2.4), (3.6). In particular, the left action of G∞ on H is given by generalized fractional
linear transformations. For a point P = (Pv)v|∞ ∈H as in (5.12), we write =(Pv) for yv ,
and we define

uv(Pv,Qv) :=
‖Pv −Qv‖

2

2=(Pv)=(Qv)
, P,Q ∈H, (9.1)
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where ‖·‖ stands for the Euclidean norm (length) in the corresponding C or H component
of M. Then u = (uv)v|∞ is a point-pair invariant on H×H, i.e. it is invariant under the
diagonal left action of G∞.

We define f∞(g) in terms of the nonnegative vector u(gi, i), where i := P(0, 1) ∈H
corresponds to the identity element ofG∞ (cf. (5.12)). Specifically, in the next subsection,
we shall choose6 a smooth, compactly supported function kv : [0,∞) → R for each
v |∞, and we put, for g ∈ G∞,

f∞(g) :=
∏
v|∞

fv(gv), fv(gv) := kv(uv(gviv, iv)). (9.2)

That is, R(f∞) = R(⊗v|∞fv) =
∏
v|∞ R(fv) is the product of the commuting operators

R(fv), hence it is positive as long as the factors R(fv) are (cf. [37, Section 104]).
We determine kv(u) in terms of its Selberg/Harish-Chandra transform hv(t) on H2

or H3 (depending on the type of v), which is necessarily holomorphic, even, and rapidly
decaying in every strip |Im t | < A, and it is real-valued on R ∪ Ri. We shall focus on
the strip |Im t | < 1, because for the positivity of R(fv) it suffices that hv(t) has positive
real part there. Indeed, in this case hv(t) is the square of an even, holomorphic, rapidly
decaying function h̃v(t) in the strip |Im t | < 1, which is real-valued on R ∪ (−1, 1)i,
therefore R(fv) is the square of the corresponding self-adjoint operator R(f̃v).

9.2. Selberg/Harish-Chandra pairs

We fix once and for all a holomorphic, rapidly decaying function

j : {t ∈ C : |Im t | < 1} → {z ∈ C : Re z > 0} (9.3)

satisfying the symmetries
j (t) = j (t) = j (−t). (9.4)

We assume further that its inverse Fourier transform

ĵ (x) =
1

2π

∫
∞

−∞

j (t)eitxdt, x ∈ R,

is smooth and supported in [−1, 1]. Such a function j (t) certainly exists, and we provide
an example based on the original construction of Iwaniec–Sarnak [24]. We take a smooth,
even, not identically zero function m : R → R supported in [−1/2, 1/2] with Fourier
transform

m̌(t) :=

∫
∞

−∞

m(x)e−itxdx, t ∈ C,

and we define j (t) as the convolution

j (t) :=

∫
∞

−∞

sech
(
π(t − s)

2

)
m̌(s)2 ds, |Im t | < 1.

6 The notations fv , gv , kv are independent of those in the previous section. Hopefully, this does
not cause confusion.
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Then ĵ (x) is the product of 2 sech(x) and the self-convolution (m∗m)(x), and the required
properties of j (t) and ĵ (x) are straightforward to verify.

After this preparation, for each archimedean place v |∞ we consider the even holo-
morphic function

hv(t) := j (t − Tv)+ j (t + Tv), (9.5)

where Tv is defined by (8.2). Then, in accordance with [23, (1.64)] and Lemma 5.5 in
[12, Ch. 3], we obtain the inverse Selberg/Harish-Chandra transform kv(u) of hv(t) in
three steps:

gv(x) := ĥv(x) = 2 cos(Tvx)ĵ (x), qv(w) :=
1
2gv

(
|2|v log(

√
w+1+

√
w)
)
, (9.6)

kv(u) :=

∫
∞

u/2

−q ′v(w) dw

π
√
w−u/2

for v real, kv(u) :=
−q ′v(u/2)

π
for v complex. (9.7)

In checking these formulae, it is good to keep in mind the following. For v real, u in
[23, (1.64)] is u/2 here. For v complex, h(1 + t2) and g(x) in [12, Ch. 3, (5.32)] are
hv(t/2) and 2gv(2x) here, while k(x) andQ(cosh(x)) in [12, Ch. 3, (5.35)] are kv(x−1)
and 4qv(w) here, upon writing cosh(x) as 1 + 2w, i.e. x = 2 log(

√
w + 1 +

√
w). The

next lemma summarizes the properties that we need of these functions.

Lemma 10. The function hv(t) is holomorphic, even, and rapidly decaying in the strip
|Im t | < 1. It is positive on R ∪ (−1, 1)i, and it has positive real part in the strip
|Im t | < 1. Moreover, at the spectral parameter tv of φ (cf. (8.1)) it satisfies the bound

hv(tv)� 1. (9.8)

The inverse Selberg/Harish-Chandra transform kv(u) of hv(t) is smooth, real-valued,
and supported in [0, 1]. Moreover, it satisfies the bound

kv(u)� min(|Tv|v, |Tv|1/2v |u|
−1/4
v ), u ≥ 0. (9.9)

Proof. It is clear by our construction that hv(t) is even, holomorphic, and rapidly decay-
ing in |Im t | < 1. It is also clear by (9.3) and (9.5) that hv(t) has positive real part in
|Im t | < 1. From (9.4) it follows that hv(t) is real on R ∪ (−1, 1)i, hence in fact it is
positive there. In particular, hv(tv) is positive. Now we prove (9.8). If |tv| ≤ 1/2, then
Tv = 1/2 by (8.2), hence hv(tv) lies in a fixed compact subset of C, and (9.8) follows. If
|tv| > 1/2, then tv ∈ R and Tv = |tv| by (8.2), hence hv(tv) > j (0), and (9.8) follows
again.

It is clear by our construction that kv(u) is smooth and real-valued. It is also clear by
(9.6) that gv(x) is supported in [−1, 1], hence kv(u) vanishes when u ≥ 2 sinh2(1/2).
This shows that kv(u) is supported in [0, 1]. Finally, we prove (9.9). For a real place v,
we follow closely the proof of [24, Lemma 1.1], so we shall be brief. By (9.6) we have

qv(w)� 1 and q ′v(w)� min(T 2
v , Tvw

−1/2),

hence by (9.7) we have, for any u, η > 0,

kv(u) =

∫
∞

0

−q ′v(t + u/2)
π
√
t

dt =

∫ η

0
+

∫
∞

η

� η1/2 min(T 2
v , Tvu

−1/2)+ η−1/2.
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Choosing η := min(T 2
v , Tvu

−1/2)−1 yields the bound (9.9). For a complex place v, the
bound (9.9) is immediate from (9.6) and (9.7), since in this case

q ′v(u/2)� min(T 2
v , Tvu

−1/2) = min(|Tv|v, |Tv|1/2v |u|
−1/4
v ).

The proof is complete. ut

9.3. The nonarchimedean part of the amplifier

Let C0 ≥ 2 be a sufficiently large constant depending only on the number field F , and let

C0 ≤ L ≤ |T |∞(Nn) (9.10)

be a parameter to be optimized later.7 We consider all the totally split principal prime
ideals in o coprime to nq which are generated by an element from F×+ ∩ (1 + q) and
whose norm lies in [L, 2L], and for each of them we choose a totally positive generator

l ∈ F×+ ∩ (1+ q). (9.11)

For each rational prime that occurs as a norm here, we keep exactly one of the l’s above
it; furthermore, by restricting l to an appropriate fundamental domain for F×+ /o

×

+, we
can and will assume that lv � L1/n for each archimedean place v (cf. Remark 1). We
denote the set of these prime elements l ∈ o by P(L). If the constant C0 ≥ 2 in (9.10) is
sufficiently large, then P(L) is nonempty and its cardinality satisfies

#P(L) � L/logL (9.12)

by the extension of Dirichlet’s theorem8 to narrow ray class groups [35, §13 in Ch. VII],
since q is a fixed ideal depending only on F .

Inspired by [49, (4.11)], and using the notation of (3.12) and (3.14), we set

xm := sgn(λ(mo)) for m ∈ o coprime to nq, (9.13)

ffin :=
( ∑
l∈P(L)

xl t
[
lo

)
∗

( ∑
l∈P(L)

xl t
[
lo

)
+

( ∑
l∈P(L)

xl2 t
[

l2o

)
∗

( ∑
l∈P(L)

xl2 t
[

l2o

)
. (9.14)

Clearly, R(ffin) is positive, because it is a sum of squares of self-adjoint operators (cf.
Section 3):

R(ffin) =
( ∑
l∈P(L)

xlT
[
lo

)2
+

( ∑
l∈P(L)

xl2T
[

l2o

)2
. (9.15)

7 See also the first sentence in Section 11.
8 For the purposes of this paper, the following weaker version of (9.11) would suffice: for each

real v |∞ the sign of lv ∈ F×v is constant, and for each p | q the square class of lp ∈ o×p is constant.
Hence, by the pigeonhole principle, we could do with Dirichlet’s theorem for the class group only,
and we could even avoid this variant by allowing a more general amplifier.
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In addition, by the multiplicativity relation (3.13), we can linearize the quadratic expres-
sion (9.14) as

ffin =
∑

06=m∈o

wmt
[
mo,

wm :=



∑
l∈P(L)(x

2
l + x

2
l2
), m = 1,

xl1xl2 + δl1=l2xl21
xl22
, m = l1l2 for some l1, l2 ∈ P(L),

xl21
xl22
, m = l21 l

2
2 for some l1, l2 ∈ P(L),

0, otherwise.

(9.16)

It follows from (9.13), (9.15), and the discussion of Section 3, that R(ffin)φ = c(ffin)φ

with

c(ffin) =
( ∑
l∈P(L)

|λ(lo)|
)2
+

( ∑
l∈P(L)

|λ(l2o)|
)2

≥
1
2

( ∑
l∈P(L)

|λ(lo)| + |λ(l2o)|
)2
>

1
8
(#P(L))2. (9.17)

In the last step we have used the bound |λ(lo)| + |λ(l2o)| > 1/2 following from (3.13).

9.4. Reduction to a counting problem

Combining (8.1), (8.2), (9.8), (9.17), we see that

c(f ) = c(ffin)c(f∞) = c(ffin)
∏
v|∞

hv(tv)� c(ffin)� (#P(L))2,

hence (3.15), (9.10), (9.12) imply for the amplifier f ∈H [ constructed above (cf. (2.9),
(8.2)) that

L2
|φ(g)|2 4

∑
γ∈0

f (g−1γg).

We recall that γ runs through the elements of GL2(F ) modulo Z(o) (cf. (3.2)). Now we
fix a special matrix

g :=

(
y x

1

)(
θi

1

)
∈ F(n) (9.18)

and the corresponding point P = P(x, y) ∈H as in Lemma 6. Then, by (9.2) and (9.16),
the previous inequality becomes

L2
|φ(g)|2 4

∑
0 6=m∈o

|wm|
∑
γ∈0

t
[
mo

((
θ−1
i

1

)
γfin

(
θi

1

))
|k(u(γP, P ))| ,

where
k(u(γP, P )) :=

∏
v|∞

kv(uv(γvPv, Pv)). (9.19)
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Assume that γ ∈ 0 contributes to the inner sum for a given nonzero integerm ∈ o. By
(9.16) and (9.11), m is totally positive and congruent to 1 modulo q, and by (3.7), (3.8),
(3.12), γ is represented by a matrix

(
a b
c d

)
∈ GL2(F ) satisfying

a, d ∈ o, a−d ∈ q, b ∈ θio, c ∈ θ−1
i (n∩q), ad − bc = mu for some u ∈ o×.

Here bc ∈ q, hence ad − bc ∈ a2
+ q, and so the unit u ∈ o× is a quadratic residue

modulo q. By the choice of q (cf. Section 2), we see that u = v2 for some v ∈ o×, and
our relations become

a, d ∈ o, a−d ∈ q, b ∈ θio, c ∈ θ−1
i (n∩q), ad − bc = mv2 for some v ∈ o×.

Multiplying
(
a b
c d

)
∈ GL2(F ) by the inverse of

(
v
v

)
∈ Z(o) does not change the class

γ ∈ 0 represented, nor does it change any of the congruence conditions on the entries
a, b, c, d, so we can and will assume that v = 1. Looking at the range of t[mo (cf. (3.12)),
we arrive at

L2
|φ(g)|2 4 vol(K[

fin)
−1

∑
0 6=m∈o

|wm|
√
N (mo)

∑
γ∈0(i,m)

|k(u(γP, P ))| , (9.20)

where

0(i,m) :=

{(
a b

c d

)
∈ GL2(F ) : a, d ∈ o, a − d ∈ q, b ∈ θio,

c ∈ θ−1
i (n ∩ q), ad − bc = m

}
. (9.21)

We note that the entry b here is always integral, because our ideal class representative
θi ∈ A×fin lies in ô (cf. Section 2). Most of the time we shall ignore the condition a−d ∈ q.
It will only become important in Lemma 17, which is the cornerstone for the proof of
Theorem 2.

We now associate to each γ ∈ 0(i,m) a certain dyadic

δ = (δv)v|∞ = (2kv )v|∞ ∈ (0, 4]v|∞

with the property that the contribution |k(u(γP, P ))| to the right hand side of (9.20) can
be estimated in terms of |δ|∞. Pick any γ ∈ 0(i,m), and for each v |∞ consider the
smallest kv ∈ Z such that

max(T −2
v , uv(γvPv, Pv)) ≤ 2kv .

We can restrict to the case kv ≤ 2, because otherwise uv(γvPv, Pv) > 4 (noting that
T −2
v ≤ 4), and hence k(u(γP, P )) = 0 by (9.19) and Lemma 10. Denoting δv := 2kv for

a moment, we have either T −2
v > δv/2 or uv(γvPv, Pv) > δv/2, hence in both cases we

get, by (9.9),
kv(uv(γvPv, Pv))� |Tv|

1/2
v |δv|

−1/4
v .
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This in turn implies, by (9.19),

k(u(γP, P ))� |T |
1/2
∞ |δ|

−1/4
∞ . (9.22)

In (9.20), we rearrange the matrices γ ∈ 0(i,m) according to their integral vectors
k ∈ Z{v|∞}, and we group together the nonzero integers m ∈ o with the same number of
prime factors (0 or 2 or 4 prime factors in P(L) as in (9.16)). To summarize our findings,
we define for any j ∈ {0, 1, 2} and for any nonnegative vector δ = (δv)v|∞,

M(L, j, δ) := #
⋃

l1,l2∈P(L)

{
γ ∈ 0(i, l

j

1 l
j

2 ) : uv(γvPv, Pv) ≤ δv for all v |∞
}
. (9.23)

We observe that in (9.20) we have, by (2.4), (2.5), (2.9),

vol(K[
fin)
−1
= vol(Kfin)

−1
∏
p|q

[Kp : K
[
p] � vol(Kfin)

−1 4 Nn,

while also w1 � L and wm � 1 form 6= 1 by (9.13) and (9.16). We conclude, also using
(9.22),

|φ(g)|2 4 (Nn)
∑

k∈Z{v|∞}
T −2
v ≤δv=2kv≤4

|T |
1/2
∞

|δ|
1/4
∞

(
M(L, 0, δ)

L
+
M(L, 1, δ)

L3 +
M(L, 2, δ)

L4

)
. (9.24)

We stress here that g ∈ GL2(A) is a special matrix of the form (9.18). It remains to bound
the matrix counts M(L, j, δ) for the special 2-adic vectors δ = (δv)v|∞ as above. This is
the subject of the next section.

10. Counting matrices

We shall analyze in depth the matrices γ =
(
a b
c d

)
∈ GL2(F ) counted by M(L, j, δ) for

some

δ = (δv)v|∞ with 0 < δv ≤ 4, (10.1)

which we assume for the rest of the paper. We recall the definitions (9.21) and (9.23). In
particular, the determinant l := ad − bc is totally positive: it is of the form l = l

j

1 l
j

2 with
l1, l2 ∈ P(L), hence it satisfies9 lv � L

2j/n for each archimedean place v |∞.

9 Hopefully, the typographical similarity of lv and l1, l2 will cause no confusion.
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10.1. Estimates on matrix entries

We claim that the following inequalities hold true at any archimedean place v |∞, with
absolute implied constants (which are independent of the number field F , the auxiliary
ideal q, etc.):

|cvPv + dv| = |lv|
1/2(1+O(

√
δv)), (10.2)

|cvPv − av| = |lv|
1/2(1+O(

√
δv)), (10.3)

cvyv � |lv|
1/2, (10.4)

2cvxv − av + dv � |lv|1/2, (10.5)

av + dv � |lv|
1/2, (10.6)

cv
lv

|lv|
y2
v − cvx

2
v + (av − dv)xv + bv � yv|lv|

1/2
√
δv, (10.7)

−cvx
2
v + (av − dv)xv + bv � yv|lv|

1/2, (10.8)

Re
(

2cvxv − av + dv
√
lv

)
�

√
δv, (10.9)

Im
(
av + dv
√
lv

)
�

√
δv. (10.10)

Here
√
lv denotes either of the two square-roots of lv . At the complex places, these bounds

follow from [3, Section 6] upon noting that δv � 1. We show below that these bounds
also hold at the real places.

Let v be a real place. We restrict ourselves to lv > 0, which is the only case needed
for this paper, but we stress that the bounds also hold when lv < 0; we omit the proof for
this case in order to save space.

Starting from γvPv = (avPv + bv)/(cvPv + dv), it follows that

=(γvPv)

=(Pv)
=

lv

‖cvPv + dv‖2
,

and so

δv ≥ uv(γvPv, Pv) ≥
|=(γvPv)− =(Pv)|

2

2=(γvPv)=(Pv)
=

1
2

∣∣∣∣ |lv|
1/2

‖cvPv + dv‖
−
‖cvPv + dv‖

|lv|1/2

∣∣∣∣2.
This gives (10.2) immediately, and also (10.3) upon noting that uv(γvPv, Pv) =
uv(Pv, γ

−1
v Pv). By considering Im(cvPv+dv), we obtain (10.4) from (10.2) upon noting

that δv � 1. By considering Re(cvPv+dv)±Re(cvPv−av), we obtain (10.5) and (10.6)
from (10.2) and (10.3) upon noting that δv � 1. Using also

δv ≥ uv(γvPv, Pv) =
‖avPv + bv − cvP

2
v − dvPv‖

2

2lvy2
v

,

we obtain (10.7) and (10.9) by considering the real and imaginary parts of the complex
number in the numerator. Finally, (10.8) is a consequence of (10.7) coupled with (10.4)
and δv � 1, while (10.10) is trivial as its left hand side vanishes.
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Remark 6. As noted at the beginning of this subsection, all implied constants are ab-
solute here. In particular, our arguments yield the following explicit version of (10.6):

|av + dv| < 17|lv|1/2. (10.11)

10.2. Preliminary bounds

We shall use Corollary 1(a) several times below, whenever we need to count lattice points
in a box.

Lemma 11. We have

M(L, 0, δ)� 1+ |y|∞|δ|
1/2
∞ .

Proof. Combining (10.4) with Lemma 6(b), we see that the number of possibilities for c
is

#c � 1+ |y|−1
∞ (Nn)−1

� 1.

For a fixed c, the number of possibilities for the difference a−d can be bounded similarly,
using (10.5), namely

#(a − d)� 1.

For a fixed pair (c, a−d) and l = det γ = 1, the number of possibilities for b is, by (10.7),

#b � 1+ |y|∞|δ|
1/2
∞ .

Finally, the quadruple (c, a−d, l, b) determines (c, a−d, ad, b), and the latter determines
(c, a, d, b) up to two choices. Hence we conclude the proof by multiplying the above
bounds. ut

LetM0(L, j, δ) andM1(L, j, δ) be the number of matrices γ =
(
a b
c d

)
∈ GL2(F ) counted

by M(L, j, δ) with c = 0 and c 6= 0, respectively.

Lemma 12. For j ∈ {1, 2} we have

M0(L, j, δ) 4 L
2
+ L2+j

|y|∞|δ|
1/2
∞ .

Proof. For the determinant l = lj1 l
j

2 with l1, l2 ∈ P(L), there are� L2 choices. Let us
fix the determinant; then since l = ad there are 4 1 possibilities for the ideals ao and do.
On the other hand, (10.2) and (10.3) imply that av, dv � |lv|1/2, hence by Corollary 1(b)
there are 4 1 choices for (a, d). If we fix this pair, the number of possibilities for b
is � 1 + Lj |y|∞|δ|

1/2
∞ by (10.7), and we conclude the proof by multiplying the above

bounds. ut
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10.3. Parabolic matrices

Let us write

M1(L, j, δ) = M2(L, j, δ)+M3(L, j, δ), j ∈ {1, 2},

where M2(L, j, δ) and M3(L, j, δ) stand for the number of parabolic and nonparabolic
matrices counted by M1(L, j, δ), respectively. Here we call a matrix γ parabolic if
(tr γ )2 = 4 det γ . The main result in this subsection is the bound for M2(L, j, δ) in
Lemma 14 below. Estimates for M3(L, j, δ) are the subject of the next subsection.

Lemma 13. Let j ∈ {1, 2}. Then M2(L, j, δ) = 0 unless |δ|∞ � L−2j
|y|−2
∞ .

Proof. Assume that γ =
(
a b
c d

)
∈ GL2(F ) is a matrix counted by M2(L, j, δ), so that

c 6= 0 and (a + d)2 = 4(ad − bc). Then γ has a unique fixed point in H ∪ F∞, namely
the field element (a−d)/(2c) ∈ F embedded in F∞. For convenience we write p := a−d
and q := 2c, and we extend these elements to an invertible matrix

(
s −r
−q p

)
∈ GL2(F ).

By Lemma 4, and recalling again (9.18), we have a decomposition(
s −r

−q p

)(
y x

1

)(
θi

1

)
=

(
t̃ s̃

1

)(
ỹ x̃

1

)(
θj

1

)
k,

where
(
t̃ s̃

1

)
∈ P(F ),

(
ỹ x̃

1

)
∈ P(F∞), and k ∈ K∗. Multiplication on the left by

(
t̃ s̃

1

)−1

does not affect the bottom row of
(
s −r
−q p

)
, and so we may assume that s, r ∈ F have been

chosen so that (
s −r

−q p

)(
y x

1

)(
θi

1

)
=

(
ỹ x̃

1

)(
θj

1

)
k. (10.12)

Furthermore, by changing k if necessary, we may assume that ỹv > 0 for any archimedean
place v |∞ (cf. (5.8)). Note that |y|∞ ≥ |ỹ|∞ by

(y x
1
)(
θi

1

)
∈ F(n).

With such a choice of
(
s −r
−q p

)
and k, we set σ := 1

ps−qr

(p r
q s

)
∈ GL2(F ) for the cor-

responding inverse, and we examine the parabolic matrix σ−1γ σ ∈ GL2(F ) by looking
at its infinite and finite component separately. The infinite component has (unique) fixed
point∞, which implies readily that

σ−1γ σ =

(
λ b′

λ

)
∈ GL2(F ) (10.13)

with λ2
= l. In particular, λ ∈ F implies λ ∈ o (i.e. l is a square). We claim that b′ ∈ θjo.

Note that b′ 6= 0, because c 6= 0; therefore, this will furnish the useful bound |b′|∞ � 1.
To justify the claim, we start by observing that (10.12) yields

σ−1
fin =

(
s −r

−q p

)
fin
=

(
θj

1

)
kfin

(
θ−1
i

1

)
,

(σ−1γ σ)fin =

(
θj

1

)
kfin

(
θ−1
i

1

)(
a b

c d

)
fin

(
θi

1

)
k−1

fin

(
θ−1
j

1

)
.
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As the determinant ad − bc is coprime to n, our assumptions (cf. (9.21)) yield for the
middle part (

θ−1
i

1

)(
a b

c d

)
fin

(
θi

1

)
∈

∏
p-n

M2(op)
∏
p|n

Kp.

The set on the right hand side is normalized by the Atkin–Lehner group K∗fin :=
∏

pK
∗
p,

hence we infer

(σ−1γ σ)fin ∈

(
θj

1

)
M2(ô)

(
θj

1

)−1

.

By (10.13), this implies b′ ∈ θjo as claimed.
If we look at the infinite component again, (10.12) shows that σ−1P = P̃ , where

P = P(x, y) ∈ H is as before, and P̃ := P(x̃, ỹ) ∈ H. With this notation, we find for
any archimedean place v |∞,

uv(γPv, Pv) = uv
(
σ−1γPv, σ

−1Pv
)
= uv

(
σ−1γ σ P̃v, P̃v

)
= uv

((
λ b′

λ

)
P̃v, P̃v

)
.

Bounding the left hand side by δv and evaluating the right hand side via (9.1), we see that
δv � |b

′
v|

2
|λv|
−2ỹ−2

v with the usual absolute value in each archimedean completion Fv .
In particular, |δ|∞ � |b′|2∞L

−2j
|ỹ|−2
∞ . However, as we have remarked earlier, |b′|∞ � 1

and |y|∞ ≥ |ỹ|∞, and therefore |δ|∞ � L−2j
|y|−2
∞ . ut

We now recall the notation

|δ|∞ = |δ|R · |δ|R, |δ|R =
∏
v real

δv, |δ|C =
∏

v complex

δ2
v ,

which is a special case of (2.1).

Lemma 14. For j ∈ {1, 2} we have

M2(L, j, δ) 4 L
3j
|δ|

3/4
R |δ|

1/4
C (Nn)−1.

Remark 7. This result is a number field version of [46, Lemma 4.4]. Unfortunately, we
were unable to reconstruct the proof of Templier’s lemma. It remains unclear to us how the
referenced argument in [18] would generalize to produce the bound of [46, Lemma 4.4],
as there does not appear to be an obvious reason why the number of scaling matrices σa
is uniformly bounded. Here we give a simple but robust proof of an alternative bound that
suffices for our purposes and would also suffice for [46].

Proof of Lemma 14. Assume that γ =
(
a b
c d

)
∈GL2(F ) is a matrix counted byM2(L, j, δ),

so that c 6= 0 and (a+ d)2 = 4(ad − bc). Then, as in the previous proof, the determinant
l = ad − bc is a square, and a + d = 2λ for one the two square-roots λ of l. At a real
place v, we can estimate cv by (10.2) and (10.9):

(cvyv)
2
= |cvPv+dv|

2
−(cvxv+dv)

2
= λ2

v(1+O(
√
δv))

2
−λ2

v(1+O(
√
δv))

2
� λ2

v

√
δv,
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and hence

cvyv � Lj/nδ1/4
v . (10.14)

At a complex place v, we record the simpler and weaker bound (10.4):

cvyv � Lj/n. (10.15)

For a fixed c 6= 0, the identity (a−d)2+4bc = 0 shows that the integer a−d is divisible
by a fixed ideal of norm at least (N (co))1/2, hence by (10.9) and (10.5) combined with
Corollary 1(a), there are

#(a − d)� 1+ Lj |δ|1/2R (N (co))−1/2

choices for this integer. We estimate the total number of pairs (c, a − d) by summing
these bounds over all nonzero elements c ∈ θ−1

i n that satisfy (10.14) and (10.15), collect-
ing first the pairs corresponding to a given fractional ideal co, and then applying Corol-
lary 1(b) for each such subsum. In this way we get, for any ε > 0,

#(c, a − d) 4
Lj |δ|

1/4
R

|y|1+ε∞ (Nn)
+

L3j/2
|δ|

5/8
R

|y|
1/2+ε
∞ (Nn)

4
L2j
|δ|

3/4
R |δ|

1/4
C

Nn
,

where in the last step we have bounded |y|∞ from below by invoking Lemma 13. Finally,
the trace a + d = 2λ can be chosen in� Lj ways, so by (a − d)2 + 4bc = 0 the total
number of possibilities for the parabolic matrix γ is

#(c, a − d, a + d) 4 L3j
|δ|

3/4
R |δ|

1/4
C (Nn)−1.

The proof is complete. ut

10.4. Generic matrices

Again, we shall use Corollary 1(a) several times below.

Lemma 15. We have

M3(L, 1, δ)� L2
+
L5/2
|δ|

1/4
R

(Nn)1/4
+
L4
|δ|R|δ|

3/4
C

Nn
, (10.16)

M3(L, 2, δ) 4 L2
+
L4
|δ|

1/2
R

(Nn)1/2
+
L6
|δ|R|δ|

1/2
C

Nn
. (10.17)

Remark 8. Our proof actually shows that (10.16) holds for M1(L, 1, δ) in place of
M3(L, 1, δ), but we preferred the current formulation for harmony.
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Proof of Lemma 15. Let j ∈ {1, 2}. If M3(L, j, δ) vanishes, then the bound stated for it
holds trivially. Otherwise, we fix some c 6= 0 that occurs in M3(L, j, δ). By (10.4), the
number of possibilities for c satisfies

#c �
Lj

|y|∞(Nn)
. (10.18)

We denote by M3(L, j, δ, c) the subcount of M3(L, j, δ) with the given c, and we shall
subdivide it as

M3(L, j, δ, c) = M3(∗) =
∑

n
M3(∗,n) =

∑
n,p

M3(∗,n,p) =
∑
n,p,q

M3(∗,n,p,q),

(10.19)

where ∗ abbreviates “L, j, δ, c”, and n = (nv), p = (pv), q = (qv) are vectors in
Z{v complex} satisfying

nv, pv, qv � δ−1/2
v , v complex. (10.20)

The role of the parameters n, p, q is to partially localize l, a − d, a + d at the various
complex places, so that we can make the most of the bounds collected in Subsection 10.1.

The components of n ∈ Z{v complex} satisfy

0 ≤ nv < 2π/
√
δv, v complex,

and we denote by M3(∗,n) the subcount of M3(∗) with the additional condition

nv
√
δv ≤ arg(lv) < (nv + 1)

√
δv, v complex, (10.21)

for the determinant l = ad − bc. If M3(∗,n) vanishes, then we subdivide it trivially as

M3(∗,n) = M3(∗,n, 0) = M3(∗,n, 0, 0) = 0.

Otherwise, we fix a matrix γn =
(
an bn
c dn

)
counted by M3(∗,n). Any matrix γ =

(
a b
c d

)
counted by M3(∗,n) is determined by the differences

a′ := a − an, d ′ := d − dn, b′ := b − bn. (10.22)

By (10.21), the determinants l := det γ and ln := det γn satisfy

lv

|lv|
−

ln,v

|ln,v|
�

√
δv and

√
lv√
ln,v
=

∣∣∣∣ lvln,v
∣∣∣∣1/2 +O(√δv), v |∞, (10.23)

with a suitable choice of the square-roots, upon noting that our determinants are totally
positive. By using lv, ln,v � L2j/n and yv � |y|

1/n
∞ (cf. (5.9)), the first part of (10.23)

combined with (10.4) and (10.7) yields

(a′v − d
′
v)xv + b

′
v � Lj/n|y|

1/n
∞

√
δv, v |∞, (10.24)
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while the second part of (10.23) combined with (10.9) and (10.10) yields

Re
(
a′v − d

′
v√

ln,v

)
, Im

(
a′v + d

′
v√

ln,v

)
�

√
δv, v |∞. (10.25)

We complement these bounds with the simpler relations that follow from (10.5) and
(10.6),

Im
(
a′v − d

′
v√

ln,v

)
, Re

(
a′v + d

′
v√

ln,v

)
� 1, v |∞. (10.26)

Of course, the above bounds for imaginary parts are trivial at the real places.
Now we denote by M3(∗,n,p,q) the subcount of M3(∗,n) with the additional con-

ditions

pv
√
δv ≤ Im

(
a′v − d

′
v√

ln,v

)
< (pv + 1)

√
δv, v complex, (10.27)

qv
√
δv ≤ Re

(
a′v + d

′
v√

ln,v

)
< (qv + 1)

√
δv, v complex. (10.28)

By (10.26), M3(∗,n,p,q) vanishes unless pv, qv � δ
−1/2
v , so we shall restrict to p,q ∈

Z{v complex} satisfying this condition. If M3(∗,n,p,q) 6= 0, then we fix a matrix γn,p,q =(an,p,q bn,p,q
c dn,p,q

)
counted by M3(∗,n,p,q). Any matrix γ =

(
a b
c d

)
counted by M3(∗,n,p,q)

is determined by the differences

a′′ := a − an,p,q, d ′′ := d − dn,p,q, b′′ := b − bn,p,q.

We remark that with (10.22) and the analogous notation

a′n,p,q := an,p,q − an, d ′n,p,q := dn,p,q − dn, b′n,p,q := bn,p,q − bn,

we can also write

a′′ = a′ − a′n,p,q, d ′′ = d ′ − d ′n,p,q, b′′ = b′ − b′n,p,q.

The point is that (10.24)–(10.28) also hold with (a′n,p,q, d
′
n,p,q, b

′
n,p,q) in place of

(a′, d ′, b′). In order to balance out the different sizes of δv at the various archimedean
places, we fix a totally positive unit s ∈ o×+ such that (cf. Remark 1)

sv
√
δv � |δ|

1/(2n)
∞ , v |∞,

and we switch to the variables

ã := sa′′, d̃ := sd ′′, b̃ := sb′′.

By (10.24), these scaled differences satisfy

(ãv − d̃v)xv + b̃v � Lj/n|y|
1/n
∞ |δ|

1/(2n)
∞ , v |∞, (10.29)
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and by (10.25)–(10.28) they also satisfy

ãv − d̃v � Lj/n|δ|
1/(2n)
∞ and ãv + d̃v � Lj/nsv, v real, (10.30)

ãv − d̃v � Lj/n|δ|
1/(2n)
∞ and ãv + d̃v � Lj/nsv

√
δv, v complex. (10.31)

By (10.29) and the first parts of (10.30)–(10.31), the Euclidean norm of the lattice point
(ã − d̃)P + b̃ ∈ 3(P ) (cf. (5.13)) can be bounded as

‖(ã − d̃)P + b̃‖ � Lj/n|y|
1/n
∞ |δ|

1/(2n)
∞ ,

and hence by Lemma 6(d),

#(ã − d̃, b̃)� 1+ Lj |y|∞|δ|
1/2
∞ (Nn)1/2 + L2j

|y|∞|δ|∞.

In addition, by the second parts of (10.30)–(10.31),

#(ã + d̃)� 1+ Lj |δ|1/2C . (10.32)

Let us assume |δ|C � L−2j for a moment. Then, as any matrix γ =
(
a b
c d

)
counted by

M3(∗,n,p,q) is determined by the triple (ã − d̃, b̃, ã + d̃), we see that

M3(∗,n,p,q)� Lj |δ|
1/2
C
(
1+ Lj |y|∞|δ|

1/2
∞ (Nn)1/2 + L2j

|y|∞|δ|∞
)
.

We combine this bound with (10.18)–(10.20). Using also Lemma 6(b), we obtain

M3(L, j, δ)�
Lj

|y|∞(Nn)

Lj |δ|
1/2
C

|δ|
3/4
C

(
1+ Lj |y|∞|δ|

1/2
∞ (Nn)1/2 + L2j

|y|∞|δ|∞
)

�
L2j

|δ|
1/4
C
+
L3j
|δ|

1/2
R |δ|

1/4
C

(Nn)1/2
+
L4j
|δ|R|δ|

3/4
C

Nn

�
L2j

|δ|
1/4
C
+
L4j
|δ|R|δ|

3/4
C

Nn
. (10.33)

In the last step, we dropped the middle term, because it is the geometric mean of the other
two terms. The bound obtained is valid under the assumptions (10.1) and |δ|C � L−2j .

We shall use (10.33) for j = 1 only, because for j = 2 we can do without (10.32),
hence also without the second parts of (10.30)–(10.31), by the following observation. For
any matrix γ =

(
a b
c d

)
counted by M3(∗,n), the determinant l = l21 l

2
2 is a square and

(a − d)2 + 4bc 6= 0. The identity

0 6= (a − d)2 + 4bc = (a + d)2 − 4l = (a + d − 2l1l2)(a + d + 2l1l2)

combined with (10.6) implies that each pair (a − d, b) gives rise to 4 1 choices for
a + d . Indeed, there are 4 1 choices for the ideals (a + d ± 2l1l2)o as their product
is a fixed nonzero ideal of norm � L4. Using Corollary 1(b), and again keeping in
mind (10.6), we see that for each choice of ideals there are 4 1 possibilities for their
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generators a + d ± 2l1l2 ∈ o, which in turn determine a + d. So, in the case of j = 2,
we only need the first parts of (10.30)–(10.31), along with (10.29). Hence, instead of
M3(∗,n,p,q), we considerM3(∗,n,p) defined as the subcount ofM3(∗,n) with the ad-
ditional condition (10.27), and we obtain an improved version of (10.33) even without the
assumption |δ|C � L−2j :

M3(L, 2, δ) 4
L2

|y|∞(Nn)

1

|δ|
1/2
C

(
1+ L2

|y|∞|δ|
1/2
∞ (Nn)1/2 + L4

|y|∞|δ|∞
)

4
L2

|δ|
1/2
C
+
L4
|δ|

1/2
R

(Nn)1/2
+
L6
|δ|R|δ|

1/2
C

Nn

4
L2

|δ|
1/2
C
+
L6
|δ|R|δ|

1/2
C

Nn
. (10.34)

In the last step, we dropped the middle term, because it is the geometric mean of the other
two terms. The bound obtained is valid under the assumption (10.1).

Now we derive (10.16) from (10.33) specialized to j = 1. If |δ|C > L−2
|δ|−1

R (Nn),
then (10.33) is applicable, and the second term dominates in it, so (10.16) follows. If
|δ|C ≤ L−2

|δ|−1
R (Nn), then we can replace each δv by some δv ≤ δ̃v ≤ 4 so that

|δ̃|R = |δ|R and |δ̃|C = min
(
16r2 , L−2

|δ|−1
R (Nn)

)
.

As (10.33) is applicable with δ̃ in place of δ, we obtain

M3(L, 1, δ) ≤ M3(L, 1, δ̃)�
L2

|δ̃|
1/4
C
+
L4
|δ|R|δ̃|

3/4
C

Nn
�

L2

|δ̃|
1/4
C
� L2

+
L5/2
|δ|

1/4
R

(Nn)1/4
,

and (10.16) follows again.
Finally, we derive (10.17) from (10.34). If |δ|C > L−4

|δ|−1
R (Nn), then the second

term dominates in (10.34), so (10.17) follows. If |δ|C ≤ L−4
|δ|−1

R (Nn), then we can
replace each δv by some δv ≤ δ̃v ≤ 4 so that

|δ̃|R = |δ|R and |δ̃|C = min
(
16r2 , L−4

|δ|−1
R (Nn)

)
.

Applying (10.34) with δ̃ in place of δ, we obtain

M3(L, 2, δ) ≤ M3(L, 2, δ̃) 4
L2

|δ̃|
1/2
C
+
L6
|δ|R|δ̃|

1/2
C

Nn
�

L2

|δ̃|
1/2
C
� L2

+
L4
|δ|

1/2
R

(Nn)1/2
,

and (10.17) follows again. ut

Our final two lemmas are the main applications of the rigidity Lemma 8. Lemma 17 below
is the crucial input for the proof of Theorem 2 and the only point where the congruences
in the matrix count imposed by the ideal q become relevant. Let F0 be the maximal totally
real subfield of F , and put m := [F : F0].
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Lemma 16. Suppose that F is not totally real, i.e. m ≥ 2. Then

M3(L, 1, δ)� L2
+ L2m

|δ|
1/2
R |δ|

1/4
C +

L2m+1
|δ|R|δ|

3/4
C

Nn
.

Remark 9. Our proof actually shows that this bound holds for M1(L, 1, δ) in place of
M3(L, 1, δ), but we preferred the current formulation for harmony. The result is the pre-
cise analogue of [3, Subsection 11.1], but the present proof is very different and applies
to all number fields without any special treatment of CM-fields. The bound is sharp for
very small distances and is responsible for a strong exponent of |T |∞ in Theorem 2. In
fact, by arguing similarly to the proof of Lemma 17 with F1 := F0

(
(a + d)2/l

)
, we can

prove that M3(L, 1, δ) = 0 unless 1 � L8(m−1)
|δ|C. We do not see how to exploit this

conclusion in the context of estimating M3(L, 1, δ) in the endgame in Section 11, so we
omit this statement and its proof.

Proof of Lemma 16. The proof shares several common elements with the proof of Lem-
ma 15, so we shall be brief at certain points. IfM3(L, 1, δ) vanishes, then the stated bound
holds trivially. Otherwise, we fix some c 6= 0 that occurs in M3(L, 1, δ). By (10.4),
the number of possibilities for c satisfies (10.18), where we set j := 1. We denote by
M3(L, 1, δ, c) the subcount of M3(L, 1, δ) with the given c, and we split it as

M3(L, 1, δ, c) = M3(∗) = M3(∗, 0)+M3(∗, 1), (10.35)

where ∗ abbreviates “L, 1, δ, c”, and the subsums M3(∗, 0) and M3(∗, 1) refer to two
complementary ranges described in (10.36) and (10.39) below.

Specifically, M3(∗, 0) denotes the subcount of M3(∗) satisfying the additional condi-
tion

|2cx − a + d|∞ ≤ 1. (10.36)

In order to estimate M3(∗, 0), we shall subdivide it as

M3(∗, 0) =
∑
n,q

M3(∗, 0,n,q),

where n,q ∈ Z{v complex} are as in the proof of Lemma 15, andM3(∗, 0,n,q) denotes the
subcount of M3(∗, 0) satisfying (10.21) and (10.28). By (10.36), the number of choices
for a − d is� 1. For fixed c, a − d, n, q, (10.29) and (10.32) give

#b � 1+ L|y|∞|δ|
1/2
∞ and #(a + d)� 1+ L|δ|1/2C .

Let us assume |δ|C ≥ L−2 for a moment. As the triple (a − d, b, a + d) determines the
matrix γ =

(
a b
c d

)
counted by M3(∗, 0,n,q), we see that

M3(∗, 0) =
∑
n,q

M3(∗, 0,n,q)�
L|δ|

1/2
C

|δ|
1/2
C

(1+ L|y|∞|δ|
1/2
∞ ) = L+ L2

|y|∞|δ|
1/2
∞ .

(10.37)
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For a general δ = (δv)v|∞, we obtain

M3(∗, 0)� L+ L2
|y|∞|δ|

1/2
∞ + L|y|∞|δ|

1/2
R . (10.38)

Indeed, if |δ|C ≥ L−2, then this is obvious by (10.37). If |δ|C < L−2, then we can replace
each δv by some δv ≤ δ̃v ≤ 4 so that |δ̃|R = |δ|R and |δ̃|C = L−2. As (10.37) is applicable
with δ̃ in place of δ, and the left hand side of (10.37) is nondecreasing in |δ|C, the bound
(10.38) follows again.

We turn to the analysis of M3(∗, 1), which we define as the subcount of M3(∗) satis-
fying the additional condition

|2cx − a + d|∞ > 1. (10.39)

We subdivide M3(∗, 1) in terms of dyadic vectors z = (zv) ∈ N{v|∞},

M3(∗, 1) =
∑

z
M3(∗, 1, z), (10.40)

where M3(∗, 1, z) denotes the subcount of M3(∗, 1) with the additional condition

1
2
<
zv|2cvxv − av + dv|

C1|lv|1/2
√
δv

≤ 1 for v real,

1
2
<
zv|2cvxv − av + dv|

C1|lv|1/2
≤ 1 for v complex.

(10.41)

Here, C1 > 0 is the maximum of the two implied constants in (10.5) and (10.9), so that
(10.40) holds with dyadic vectors z ∈ N{v|∞}. By (10.39) and (10.41), either M3(∗, 1, z)
is empty or |z|∞ � L|δ|

1/2
R , and hence by lv � L2/n the number of choices for a − d is

#(a − d)� L|δ|
1/2
R |z|

−1
∞ . (10.42)

Fixing a − d and combining (10.9) with (10.41), a moment’s thought gives

arg(lv) ≡ π + 2 arg(2cvxv − av + dv)+O(zv
√
δv) (mod 2π), v complex. (10.43)

At this point the stage is set for the application of realness rigidity, Lemma 8. We
write

N := d(C2L
2(m−1)

|δ|
1/4
C )1/r2e,

where C2 > 0 is a sufficiently large constant (depending only on F ) to be chosen shortly.
Inequality (10.43) states that arg(lv) belongs to a fixed interval of length � zv

√
δv for

every complex place v. We split each of these intervals into subintervals I (v, jv) of length
at most

√
δv/N , where jv � zvN is a positive integer. Then, with j := (jv), the total num-

ber of combinations of these subintervals at the various complex places can be bounded
as

#j� |z|1/2C N r2 � |z|1/2C (1+ L2(m−1)
|δ|

1/4
C ). (10.44)

We claim that for each combination j, there exists at most one determinant l = l1l2 with
l1, l2 ∈ P(L) such that arg(lv) ∈ I (v, jv) for all complex places v. Indeed, let l = l1l2



48 Valentin Blomer et al.

and l′ = l′1l
′

2 be any two such determinants, and let ξ := l′/l be their ratio. Then arg(lv)
and arg(l′v) differ by at most

√
δv/N at every complex place v, and hence by the definition

of P(L) in Subsection 9.3,

ξv � 1 and Im ξv �
√
δv/N, v |∞.

Consider the number field F1 := F0(ξ). If F = F1, then Lemma 8 is applicable, and we
obtain

1� L8(m−1)
|δ|C/N

4r2 ≤ 1/C4
2 .

By choosing the constant C2 > 0 to be sufficiently large, this inequality is impossible,
hence F1 is a proper subfield of F . We claim that ξ ∈ o. We can write ξoF1 as a ratio a/b
of nonzero coprime ideals a, b ⊆ oF1 in F1. Then ξo is the ratio (ao)/(bo) of the nonzero
coprime ideals ao, bo ⊆ o in F , and therefore bo divides lo. By the definition of P(L),
lo is a product of totally split prime ideals such that distinct prime ideal factors lie above
distinct rational primes, hence we infer that bo = o. As a result, ξ ∈ ao ⊆ o is an integer
as claimed. By switching the roles l and l′, we also see that ξ−1

∈ o, i.e. ξ ∈ o× is a unit.
However, again by the definition of P(L), this forces ξ = 1, i.e. l = l′.

By the previous paragraph, we have (cf. (10.44))

#l ≤ #j� |z|1/2C (1+ L2(m−1)
|δ|

1/4
C ).

Moreover, by (10.7), for each fixed pair (a − d, l) we have (noting that c is also fixed)

#b � 1+ L|y|∞|δ|
1/2
∞ .

As the triple (a − d, l, b) determines the matrix γ =
(
a b
c d

)
counted by M3(∗, 1, z) up to

two choices, we see by (10.42) and our last two bounds that

M3(∗, 1, z)�
L|δ|

1/2
R

|z|R|z|
1/2
C
(1+ L2(m−1)

|δ|
1/4
C )(1+ L|y|∞|δ|

1/2
∞ ).

Summing up over all dyadic vectors z ∈ N{v|∞}, we infer

M3(∗, 1)� (L+ L2m−1
|δ|

1/2
R |δ|

1/4
C )(1+ L|y|∞|δ|

1/2
∞ ). (10.45)

Finally, combining (10.18), (10.35), (10.38), (10.45), and using also Lemma 6(b), we
obtain

M3(L, 1, δ)�
L

|y|∞(Nn)
(L+ L2

|y|∞|δ|
1/2
∞ + L|y|∞|δ|

1/2
R )

+
L

|y|∞(Nn)
(L+ L2m−1

|δ|
1/2
R |δ|

1/4
C )(1+ L|y|∞|δ|

1/2
∞ )

� L2
+ L2m

|δ|
1/2
R |δ|

1/4
C +

L2m+1
|δ|R|δ|

3/4
C

Nn
.

The proof is complete. ut
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Lemma 17. We have M3(L, 2, δ) = 0 unless

1� L8(m−1)
|δ|C. (10.46)

Proof. Assume that γ =
(
a b
c d

)
∈ GL2(F ) is a matrix counted by M3(L, 2, δ). Recall that

the determinant is of the form l = l21 l
2
2 with l1, l2 ∈ P(L). We observe that

ξ :=
a + d

l1l2
∈ F (10.47)

satisfies, by (10.11) and (10.10),

|ξv| < 17 and Im ξv �
√
δv, v |∞. (10.48)

Consider the number field F1 := F0(ξ). If F = F1, then Lemma 8 is applicable, and
we obtain (10.46) from (10.47) and (10.48). Otherwise, F1 is a proper subfield of F . We
claim that ξ ∈ o. If ξ = 0, then the claim is trivial. If ξ 6= 0, then we can write ξoF1 as
a ratio a/b of nonzero coprime ideals a, b ⊆ oF1 in F1. Then ξo is the ratio (ao)/(bo)
of the nonzero coprime ideals ao, bo ⊆ o in F , and therefore bo divides l1l2o. Using
the definition of P(L) in Subsection 9.3, l1l2o is a product of totally split prime ideals
such that distinct prime ideal factors lie above distinct rational primes, hence we infer that
bo = o. As a result, ξ ∈ ao ⊆ o is an integer as claimed. Using a − d ∈ q and bc ∈ q (cf.
(9.21)), we even see that ξ2

− 4 = ((a − d)2 + 4bc)/ l ∈ q. Now ξ2
− 4 ∈ q is nonzero

(because γ is nonparabolic), hence its norm |ξ2
− 4|∞ is at least N q. However, this is

impossible by (2.3) and (10.48) as the following short calculation shows:

300n ≤ N q ≤ |ξ2
− 4|∞ =

∏
v|∞

|ξ2
v − 4|v <

∏
v|∞

|172
+ 4|v = 293n.

The proof is complete. ut

11. The endgame

Theorems 1 and 2 are trivial when |T |∞(Nn) is bounded, hence we can assume that
|T |∞(Nn) is sufficiently large in terms of the number field F . We recall (9.24) in the
form

|φ(g)|2 4 (Nn) sup
δ=(δv)v|∞

T −2
v ≤δv≤4 for all v|∞

|T |
1/2
∞

|δ|
1/4
∞

(
M(L, 0, δ)

L
+
M(L, 1, δ)

L3 +
M(L, 2, δ)

L4

)
,

(11.1)

where L is an arbitrary amplifier length satisfying (9.10). We note that the vector δ satis-
fies

|T |−2
R ≤ |δ|R, |T |−2

C ≤ |δ|C. (11.2)
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First we prove Theorem 1. For j ∈ {1, 2} we have:

M(L, 0, δ)� 1+ |y|∞|δ|
1/2
∞ by Lemma 11,

M0(L, j, δ) 4 L
2
+ L2+j

|y|∞|δ|
1/2
∞ by Lemma 12,

M2(L, j, δ) 4 L
3j
|δ|

3/4
R |δ|

1/4
C (Nn)−1 by Lemma 14,

M3(L, 1, δ)� L2
+ L5/2

|δ|
1/4
R (Nn)−1/4

+ L4
|δ|R|δ|

3/4
C (Nn)−1 by Lemma 15,

M3(L, 2, δ) 4 L2
+ L4
|δ|

1/2
R (Nn)−1/2

+ L6
|δ|R|δ|

1/2
C (Nn)−1 by Lemma 15.

From (11.1) and (11.2) we infer

|φ(g)|2 4 (Nn)

(
|T |∞

L
+ |T |

1/2
∞ |y|∞ +

L2
|T |

1/2
∞

Nn
+
|T |

1/2
R |T |C

(Nn)1/2

)
.

We equate the first and third term by choosing L := |T |1/6∞ (Nn)1/3, and then our bound
becomes

φ(g) 4 |T |5/12
∞ (Nn)1/3 + |T |

1/4
R |T |

1/2
C (Nn)1/4 (11.3)

as long as |y|∞ ≤ |T |
1/3
∞ (Nn)−1/3, but (11.3) remains true in the opposite case by

Lemma 9. This completes the proof of Theorem 1.
We prove Theorem 2 following a similar strategy. For j ∈ {1, 2} we have:

M(L, 0, δ)� 1+ |y|∞|δ|
1/2
∞ by Lemma 11,

M0(L, j, δ) 4 L
2
+ L2+j

|y|∞|δ|
1/2
∞ by Lemma 12,

M2(L, j, δ) 4 L
3j
|δ|

3/4
R |δ|

1/4
C (Nn)−1 by Lemma 14,

M3(L, 1, δ)� L2
+ L2m

|δ|
1/2
R |δ|

1/4
C + L

2m+1
|δ|R|δ|

3/4
C (Nn)−1 by Lemma 16,

M3(L, 2, δ) 4 L2
+ L2m+2

|δ|
1/2
R |δ|

1/4
C (Nn)−1/2

+ L6
|δ|R|δ|

1/2
C (Nn)−1

by Lemmata 15 and 17,

where m = [F : F0] ≥ 2, and we inserted the factor L2(m−1)
|δ|

1/4
C � 1 artificially (cf.

(10.46)) in the second term on the last line. From (11.1) and (11.2) we infer

|φ(g)|2 4 (Nn)

(
|T |∞

L
+ |T |

1/2
∞

(
|y|∞ + L

2m−3
+

L2m−2

(Nn)1/2

))
.

Introducing the constant C3 := 2nC0 (cf. (9.10)) and choosing

L := min
(
(|T |∞Nn)

1
4m−2 , C3|T |

1
4m−4
∞

)
,

we obtain

φ(g) 4 (|T |∞Nn)1/2
(
(|T |∞Nn)−

1
8m−4 + |T |

−
1

8m−8
∞

)
(11.4)
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as long as |y|∞ ≤ |T |
1/4
∞ , but (11.4) remains true in the opposite case by Lemma 9. Using

also (11.3), we can strengthen (11.4) to

φ(g) 4 (|T |∞Nn)1/2
(
(|T |∞Nn)−

1
8m−4 +min

(
|T |
−

1
8m−8
∞ , (Nn)−1/4

))
.

However,

min
(
|T |
−

1
8m−8
∞ , (Nn)−1/4

)
≤

(
|T |
−

1
8m−8
∞

) 2m−2
2m−1

((Nn)−1/4)
1

2m−1 = (|T |∞Nn)−
1

8m−4 ,

hence in fact our bound simplifies to

φ(g) 4 (|T |∞Nn)
1
2−

1
8m−4 .

This completes the proof of Theorem 2.
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